
___~_(Q)_~C¥?~D=D
ITlICROS"'STeITlS

p-System™ Software
Reference Library

Internal
Architecture

1-140.4I.A

/~ p-System8

Internal Architecture Reference Manual

SofTech Microsystems, Inc.
San Diego, California

1-140.41.A

Copyright © 1983 by SofTech Microsystems, Inc.

All rights reserved. No part of this work may be
reproduced in any form or by any means or used to
make a derivative work (such as a translation,
transformation, or adaptation) without the written
permission of SofTech Microsystems, Inc.

p-System is a trademark of SofTech Microsystems,
Inc.

UCSD and UCSD Pascal are registered trademarks
of the Regents of the University of California.
Use thereof in conjunction with any goods or
services is authorized by specific license only, and
any unauthorized use is contrary to the laws of the
State of California.

CP/M is a registered trademark of Digital
Research, Inc.

Printed in the United States of America.

Disclaimer

This document and the software it describes are
subject to change without notice. No warranty
expressed or implied covers their use. Neither the
manufacturer nor the seller is responsible or liable
for any consequences of their use.

PREFACE

Preface

This publication is a reference manual for the
p-System. It covers the internal details of the
p-System. The p-machine architecture and
instruction set are covered. Code file format,
low-level I/O mechanisms, and operating system
details are also addressed.

For further information about the system and its
use, refer to the following publications:

Personal Computing with the UCSD p-System
Operating System Reference Manual
Program Development Reference Manual
Assembler Reference Manual
Optional Products Reference Manual
Adaptable System Installation Manual
UCSD Pascal Handbook
FORTRAN-77 Reference Manual
BASIC Reference Manual

0400101:00A

TABLE

OF

CONTENTS

INTRODUCTION. • • • • • • • • • • • • • • • 1-3

PURPOSE OF THIS MANUAL •••••••• 1-3

A BRIEF HISTORY OF THE SYSTEM. 1-5

CODE FILE FORMAT. • • • • • • • • • • • • 2-3

INTRODU CTION. • • • • • • • • • • • • • • 2-3

CODE SEGMENTS. • • • • • • • • • • • • • 2-3

Code Segments and Byte Sex. • • • • • • 2-6

Routine Dictionary. • • • • • • • • • • • • 2-7

Routine Code. • • • • • • • • • • • • •• 2-7

The Constant Pool/Real Constants. • • • 2-8

The Relocation List. • • • • • • • • •• 2-15

Segment Reference List. •

Linker Information. • • • •

Table of Contents

2-19

2-22

CODE FILE ORGANIZAnON. • 2-29

The Segment Dictionary. • • • • • 2-29

Assembler-Generated Code Files. • • • • 2-36

THE P-MACHINE. • •••

OVERVIEW ••••••

• 3-3

• • 3-3

Emulative Execution. • • • • • • • • • • • 3-4

The Stack and the Heap. • • • • • • • • • 3-4

Code Segments. • • • • • • • • • • • • • • 3-5

Device I/O. • • • • • • • • • • • • • • • • 3-7

CODE SEGMENT ENVIRONMENTS. • • • • 3-8

Segment Information Blocks (SIBs). • • • • 3-8

Environment Records (E_Recs) •••••• 3-13

TASK ENVIRONMENTS. • • • 3-17

P-MACHINE INSTRUCTIONS •••••••• 3-22

The Intrinsic P MACHINE. • • • • • •• 3-22

P-MACHINE REGISTERS. . • • • • • • • • 3-25

CURPROC. • • • • • • • • • • • • • •• 3-25

CURTASK ••••••••••••••••• 3-26

EREC. . • • . • . • • • . • • .

EVEC. • • • • • • • • • . • • . •

10RESULT ••••••••••••••••

IPC.

3-26

3-26

3-27

3-27

Table of Contents

MP. 3-27

READYQ. • • • • • • • • • • • • • • • • 3-28

SP. 3-28

FAULTS ". 3-29

EXECUTION ERRORS. • • • • • • • • • • 3-31

P-CODE INSTRUCTIONS •••••••••• 3-40

Instruction Parameters. • • • • • • • • • 3-42

Dynamic Operands. • • • • • • • • • •• 3-43

Activation Records •••••••••••• 3-47

P-CODE DESCRIPTIONS. • • • • • • • • • 3-49

STANDARD PROCEDURES •••••••• 3-182

UNIT I/O PROCEDURES ••••••••• 3-183

STRING PROCEDURES •••••••••• 3-191

COMPILER PROCEDURES ••

CODE POOL PROCEDURES ••

3-196

3-201

CONCURRENCY PROCEDURES ••••• 3-207

MISCELLANEOUS PROCEDURES ••••• 3-209

LONG INTEGERS ••••••••••••• 3-211

Number Format. • • • • • • • • • • •• 3-211

Long Integer Constants. • • • • • • • • 3-213

LONGOPS Routines. • • • • • • • • • • 3-215

DECOPS Routines •••••••••••• 3-216

Table of Contents

Processor-Specific Information. • • •• 3-224

8086/8088/LSI-11/6809/9900. • • • • • 3-224

68000. • • • • • • • • • • • • • • • • • 3-224

Z80/8080/6502. • • • • • • • • • • • • 3-225

HP-87 3-225

LOW-LEVEL I/O. • • • • • • • • • • . • • • • 4-3

THE I/O SUBSYSTEM •••••••••••• 4-3

DEVICE I/O ROUTINES. • • • • • • • • • • 4-8

Calling the RSP/10. • • • • • • • • • •• 4-9

Devices and Device Numbers. 4-10

User-Defined Devices •••••••••• 4-10

CONTROL Parameters. • • • • • • •• 4-11

10RESULT and Completion Codes. • • • 4-13

Logical Disk Structure. • • • • • • • • • 4-14

Physical Sector Addressing Mode. • • • 4-15

Physical Sector Numbers. • • • • • • • 4-16

Physical Sector Size. • • • • • • • •• 4-17

THE RSP. • • • • • • • • • • • • • • • • • 4-18

Calling Mechanisms. • • • • • • • • • • • 4-18

UNITREAD and UNITWRITE. • • • •• 4-19

Parameter Description. • • • • • • • • • 4-19

Parameter Stack Format. • • • • • •• 4-21

UNITBUSY • • • • • • • • • • • • • • • • 4-22

UNITWAIT. • • • • • • • • • • • • • • • 4-23

UNITCLEAR ••••••••••••••• 4-24

UNITSTATUS. • • • • • • • • • • • •• 4-24

Table of Contents

RSP Responsibilities. • • • • • • • • •• 4-25

Special Character Output Handling ••• 4-25

Blank Compression Code (DLE's). •• 4-26

Carriage Return - Line Feed. • • 4-26

NOCRLF Bit. • • • • • • • • • • • • • 4-27

Special Character Input Handling. • • • 4-27

EOF Character. . • • • • • • • • • • • 4-28

ALPHALOCK Character. • • • • • • • 4-29

Other Characters. • • • • • • • • •• 4-29

NOSPEC Bit ••••••••••••••• 4-30

Translation for Subsidiary Volumes. • • 4-30

BIOS. • • • • • • • • • 4-32

Design Goals. • • • • • • • • • • 4-32

Completion Codes. • • • • • • • • • • • • 4-33

Calling Mechanisms. • • • • • • • • • • • 4-34

Console. 4-34

Printer ••• • 4-35

Disks. 4-35
Remote. 4-36

User-Defined Devices •••••••••• 4-36

Character Codes. • • • • • • • • • • • • 4-37

BIOS Responsibilities. • • • • • • • • • • 4-39

Console. 4-39
Console Output Requirements. • 4-39
Console Output Options. • • 4-41

Console Input Requirements. • 4-43

Console Input Options. • • • • 4-43

Table of Contents

START/STOP ••••••••••••• 4-44

FLUSH. • • • • • • • • • • • • • •• 4-45

BREAK. • . • • • • • • • • • • • • • 4-46

Type-Ahead. • • • • • • • • • • • • • 4-47

Input Character Mask. • • • • • •• 4-47

Initialization and Control. • • • • • 4-48

Console Status. • • • • • • • • . • • • 4-50

. 4-50

Disk.

Printer.

Printer

Printer

Printer

Printer

Output Requirements. • • • •

Input Requirements. • • • • •

Initialization and C-Ontrol. • •

Status.

4-51

4-52

4-52

4-53

4-53

Mapping Blocks on Physical Sectors. • 4-53

Bootstrap Location. • • • • • . • • • 4-54

Physical Sector Mode. • . • 4-55

Disk Output Requirements. • • • • 4-56

Disk Input Requirements. • • • • • • • 4-57

Disk Initialization and Control. • •• 4-57

Disk Status. • . • • • • • • • • • • • • 4-57

Remote. • • • . • • • • • • • • • • •• 4-58

Remote Output Requirements. • • • • 4-58

Remote Input Requirements. . • • • • 4-58

Remote Initialization and Control. • • 4-59
Remote Status. • • • . • • • 4-59

User-Defined Devices. • • . 4-59

Special BIOS Calls. • • • . • • • • • • • 4-60

System Output. • • • • • • • • • • • • • 4-60

Table of Contents

System Input. • • • • • • • • • • • , • • 4-60

System Initialization and Control. • • • 4-60

System Status. • • • • • • • • 4-61

BIOS CALLING CONVENTIONS. • 4-62

PROCESSOR-SPECIFIC BIOS CALLS. • • 4-64

8086/8088. • • • • • • • • • • • • • • • • 4-64

8080/Z80. • • • • • • • • • • • • • • •• 4-67

6502. • • • • • • • • • 4-69

6809. 4-71

68000. 4-73

THE OPERATING SYSTEM. • • • • • • • •• 5-3

OVERVIEW OF THE OS ••••••••••• 5-3

P-MACHINE SUPPORT. • • • • • • • • 5-5

The Heap: An Overview. • • • • • • 5-5

MARK and RELEASE. • • • • • • • • • • 5-5

NEW and VARNEW. • • • • • • • • • • • 5-6

DISPOSE and VARDISPOSE. • • • • •• 5-7

PERMNEW and PERMDISPOSE. • • • • • 5-7

Heap Implementation. • • • • • • • • • • • 5-8

Unit Organization. • • • • • • • • • •• 5-8

Heap Globals. • • • • • • • • • • • •• 5-9

Tactics. • • • • • • • • • • • • • • • • 5-11

Run-Time Environment. • • • • • • •• 5-12

Table of Contents

THE CODE POOL. • • • • • • • • • • • • 5-13

Fault Handling. • • • • • • • • • • • •• 5-18

Concurrency. • • • • • • • • • • • • • • • 5-20

I/O SUPPORT. . • • • • • • • • • • • •• 5-22

FIBs. . . • 5-22

Directories. • • • • • • • • • • • • • •• 5-24

VARIETIES OF I/O. • • • • • • • • • • • • 5-25

Record I/O. • • • • • • • • • • • • • • • 5-25

Screen I/O. • • • • • • • • • • • • • •• 5-25

Block I/O. • • • • • • • • • • • • • • • • 5-25

Text I/O. • • • • • • • • • • • • • • •• 5-26

PROGRAM EXECUTION. • • • • • • • • • • • 6-3

BUILDING A RUN-TIME ENVIRONMENT •• 6-3

QUICKSTARTING PROGRAMS. • • • • • • 6-5

Program Invocation Overview. • • • • • • 6-6

Segment Dictionary Structure. 6-10

PED Structure. • • • • • • • • • • • •• 6-13

Table of Contents

APPENDICES

A: P-MACHINE OPCODES (Alpha) ••••• A-3

B: P-MACHINE OPCODES (Numeric) •••• A-7

C: P-MACHINE INTRINSICS •••••••• A-ll

D: PASCAL DEFINITIONAL RSP ••••• A-12

E: PASCAL DEFINITIONAL BIOS. • • A-19

F: ASCII TABLE. • • • • • A-27

G: GLOSSARY. • • • • • • • • • • • • A-28

INDEX. 1-1

CHAPTER 1

INTRODUCTION

Introduction

PURPOSE OF THIS MANUAL

This manual describes the internal design of the
p-SystemS . The coverage includes the p-machine,
operating system, basic I/O, and the way in which
these elements are organized to support the running
of a program written in UCSD Pascal®, BASIC, or
FORTRAN-77.

It should serve as a guide and reference for more
advanced users of the p-System, but isn't intended
to be a stand-alone definition for the use of
implementors. Such a definition doesn't yet exist;
if one is written, it will probably be based on the
format of this book.

Perhaps the best way to use this manual is to read
it sequentially, skipping those sections (such as the
list of p-codes) that go into very specific detail.
This should give the reader a fairly complete
picture of what goes on within the p-System. If
the user then needs to know specific internal
details, the relevant section can be referred to
later.

While few users will want or need to implement a
p-System from scratch, the internal descriptions
provided in this guide should be useful to a number
of audiences.

0400101:01A 1-3

Introduction

The largest audience is probably those who will
make no specific use of the information. To these
users, the benefit will be a better understanding of
the p-System's operation and a general improvement
in their ability to engineer programs for effective
execution in the p-System environment.

Second, there are the implementors of system
software facilities that complement existing
p-System capabilities; for instance, new language
translators, new system utilities, or p-machine
emulators (PMEs) for additional processors. For
this group of programmers, the Internal
Architecture Reference Manual presents more
information than was available in the past.

Finally, there are the implementors with a
compelling need to use facilities such as the ability
to explicitly generate p-codes in a Pascal program,
where an ordinary Pascal construct wouldn't suffice
(we take it for granted that only a compelling need
would lead you to take such steps).

All of these audiences (but particularly the last)
should understand that the principal commitment of
SofTech Microsystems (and its licensees) is to the
user facilities, and not to any of the specific
implementation strategies that are described in this
guide. Programmers who take advantage of
"internal tricks" do so at their own riSk.

1-4 0400101:01A

Introduction

A BRIEF HISTORY OF THE SYSTEM

The software system that is now called the
p-System began when Kenneth Bowles was
responsible for teaching the introductory
programming course at the University of California,
San Diego. In late 1974, under Bowles' direction, a
group of undergraduate and graduate students began
to implement Pascal for microcomputers.

Before this time, the introductory programming
course had been taught using a large time-shared
computer. This presented a bottleneck-many
people used the. machine, so its turnaround was
sometimes quite slow, and a student's productivity
was to some extent limited by the availability of
the card punches. Furthermore, the machine's
time-sharing environment, its accounting system, its
complexity, and the amount of sensitive information
that it stored prevented the student from any
extensive "hands on" use of the machine or its
facilities. In brief, the computer was intimidating.

0400101:01A 1-5

Introduction

These were the main reasons for the decision to
change the nature of the beginning programming
course. It would be self-paced, to accommodate
the large number of students, and each individual
student's study habits (UC-Irvine's physics program
had been doing this successfully for a couple of
years). It would use Pascal, rather than the
dialect of Algol that was specific to the
University's large time-sharing computer; and, it
would use microcomputers.

The decision to use small computers was motivated
partly by their low cost, and partly by the desire
to give students an opportunity to program in an
interactive environment. The system was first
implemented for a number of PDP-U/lO's with
floppy disks and VT-50 terminals. Students were
expected to buy their own floppy disk, and use it
for storing the system and their own programs.

It was the interactive environment that led to some
of UCSD Pascal's deviations from the standard
language, mostly as regards INTERACTIVE files and
the handling of EOF and EOLN. The type STRING
came about from the desire to teach basic
programming concepts without recourse to numerical
problems (which distracted many students from the
actual problems of programming).

1-6 0400101:01A

Introduction

The user interface of the p-System, by which we
mean the philosophy of displaying a menu or prompt
at every level of the p-System, and organizing them
in a tree structure, was intended to be easy to
learn for the complete novice, yet usable (that is,
not cumbersome) for the experienced user. This
proved very successful, and has been retained.

The emulative approach to executing Pascal was
present from the beginning. P-code, adapted from
the original design by Drs Amman of the
"Eidgenossische Technische Hochschule," in Zurich,
was designed to be compact and easily generated
by a compiler; because of the constraints of the
microprocessor environment, the goal was to keep
the compiler and the code files as small as
possible. The tradeoff in execution time was felt
to be an affordable cost (time has borne out this
decision).

All of the original implementations were on
PDP-ll/LSI-ll machines. Because of the emulative
approach, it was a relatively straightforward matter
to rewrite the p-machine emulator for the 8080 and
Z80, and subsequently, for many other processors.

0400101:01A 1-7

Introduction

This adaptation of the PME (sometimes called the
interpreter) was originally motivated by the search
for less expensive hardware, but it was soon
recognized that software portability was valuable in
itself. The economics of the computer business,
especially the microprocessor field, dictated this.
It isn't a new observation that hardware costs
continue to plummet, while software, being
"hand-made," continues to be very expensive; it is
relatively new to encounter a software system that,
through modularity and portability, addresses the
problem as thoroughly as does the p-System.

1-8 0400101:01A

Code File
Format

~----------g
Q,
ft)

"
_.-ft)
tr..
:I
AI..

'J

CHAPTER 2

CODE FILE

FORMAT

Code File Format

INTRODUCTION

This chapter describes the internal format of
p-System code files. Code files may contain either
p-code or native code. P-code is the output of the
compilers and is described in Chapter 3. Native
code is specific to a particular processor and is
output by the assemblers and the Native Code
Generator. Code files also contain various sorts of
"housekeeping" information.

CODE SEGMENTS

A code segment is a section of executable code
which is brought into memory as a whole unit.
Each segment consists of a collection of routines
(procedures, functions, and so forth), together with
descriptive information. The code and information
in a segment are contiguous since the code segment
is the "unit of movement" for code.

There are up to 255 routines within a segment,
numbered 1 through 255.

At compile time, segments are assigned a name and
a number. The name is eight characters long. It
is used by the operating system to handle
intersegment references at associate time.
(Associate time is the time it takes the operating
system to stitch together the units referenced by a
program.) It is also used when maintaining code
files with LIBRARY. The number is used to
reference the segment at run-time.

0400101:02A 2-3

Code File Format

The beginning (low address) of a code segment is a
record that contains the following information about
the segment:

pointer to the procedure dictionary
pointer to the relocation list
the eight character name of the segment (four words)
byte sex indicator
pointer to the constant pool
real size indicator
space reserved for future use (two words)

Figure 2-1 illustrates a code segment as it would
be loaded into memory. The various sUbstructures
of a code segment are described below. Note that
all fields within a code segment are word-aligned.
Also, all intersegment pointers are word offsets
from the base of the segment.

2-4 0400101:02A

Code File Format

high address

odd even

procedure
dictionary

procedure

code for

procedure

#2

Figure 2-1.

0400101: 02A

relocation list

number of procedures

pointer to procedure 1

pointer to procedure 2

...
pointer to procedure N

Constant Pool

procedure code

procedure#2 -object code

datasize

exitic -

procedure code

part number

realsize

constant pool pointer

byte sex indicator word = 1

8 chacter symbolic

name of segment

relocation list pointer

proc dictionary pointer

low address

Executable Code Segment Format

2-5

Code File Format

Code Segments and Byte Sex

Code segments are independent of the byte sex
of the host processor. A number of system
components cooperate to achieve this
independence.

There are two groups of word-oriented
(byte-sex-dependent) information. The first is
superstructure information, such as the routine
dictionary. This information is flipped by the
operating system when a segment is loaded. The
second is embedded information, such as constants
(accessed by the Load Constant (LDC) (rmachine
instruction or by Case Jump (XJP) tables). This
sort of information is flipped by the PME.

The compiler produces code segments that contain
word information in the natural order of the
machine on which the compiler is run.
Immediately following the segment's 8 character
name is a flag that always contains the constant
1, in the byte sex of the original machine; if
read in the opposite byte sex, it appears to be
256.

When a segment is loaded by the operating
system, and its byte sex flag indicates that the
sex of the segment is opposite that of the
running machine, the segment superstructure is
byte-swapped. Embedded information is then
flipped by the PME.

The net result is that segments of either sex can
run on any machine.

2-6 0400101:02A

Code File Format

Routine Dictionary

The first word in a code segment points to word
o of the segment's routine dictionary (also called
the "procedure dictionary"). The routine
dictionary is a list of pointers to the code for
each routine in the segment. Each routine
dictionary pointer is a segment relative word
pointer.

Routines within a segment are numbered 1
through 255. A routine's number is a negative
index into the routine dictionary; the n'th word
in the dictionary contains a pointer to the code
for routine n.

The first word (word 0) of the dictionary
contains the number of routines in the segment.

In the case of EXTERNAL and FORWARD
routines, the source code may contain a routine's
declaration but not its code. The corresponding
routine dictionary entry is zero (at least, before
linking).

Routine Code

The code of a routine consists of two words:
Data Size and Exit IC, followed by the
executable object code.- The object code may be
entirely p-code, entirely native code, or a
mixture of the two.

0400101:02A 2-7

Code File Format

Data Size is the number of words of local data
space that must be allocated when the procedure
is called. Data Size doesn't include parameters;
the routine's parameters are assumed to already
be on the stack. The first executable instruction
starts at the word immediately following the
Data Size word. If the first executable
instruction is native code, Data_Size is negative.
No local data space is allocated for assembly
language procedures.

If this first instruction is a p-code instruction,
then Exit IC is a segment relative byte pointer
to the code that must be executed when the
procedure is exited. Otherwise, Exit_IC is
undefined at run-time~

If the code of the routine contains both p-code
and native code, it is still the first instruction of
the routine that determines these conditions.
Procedure code produced by a Native Code
Generator always starts with a p-code. Thus,
Data Size and Exit IC are defined as in a
procedure which consiSts entirely of p-code.

The Constant Pool/Real Constants

Multi-word constants are stored together in a
single constant pool for the entire segment. The
constant pool begins immediately after the last
body of procedure code in the segment.

2-8 0400101:02A

Code File Format

The location of the constant pool is contained in
the constant pool pointer, a segment relative
word pointer that immediately follows the byte
sex indicator word at the beginning of the
segment; it points to the low address of the
constant pool. If the constant pool pointer is
equal to zero, the segment doesn't contain a
constant pool.

Constants are referenced by word offsets relative
to the beginning (low address) of the constant
pool.

The constant pool is divided into two subpools:
the real pool and the main pool.

The first word of the constant pool points to the
beginning of the real pool. This is a word
pointer relative to the start of the constant pool;
if there are no real constants in the code
segment, this word will be O. The first word of
the real pool contains the number of real
constants in the real pool.

Figure 2-2 illustrates a constant pool with an
embedded real subpool.

0400101:02A 2-9

Code File Format

pointer to procedure N
high

address

real subpool

number of
real constants

real subpool ptr I
low 1-----------1

address

constant
pool
ptr

2-10

Figure 2-2. Constant Pool

0400101:02A

Code File Format

Real constants are compiled into a
processor-independent ("canonical") format and are
converted, at segment load-time, into a
processor-specific internal format. Real
constants are generated as either 2-word (32-bit)
or 4-word (64-bit) floating point data formats.
Code files containing real constants can be
transported across all p-System implementations
which use the same real size. In order to
transport them to a machine using a different
real size, they must be recompiled. Within a
single program, all compilation units must share
the same size for real values.

The default real size of a code file created by
the compiler is determined by the p-machine
emulator in use at compile-time. The $R
compiler directive may override this default,
however.

The real size at compilation time is embedded in
every code segment (even though it may not
reference any reals). The Real_Size word at the
base of the segment contains this value.

0400101:02A 2-11

Code File Format

A 32-bit real constant is represented by a
three-word record. The first word contains a
signed integer representing the exponent value.
The following two words contain the mantissa
digits. A mantissa word representing significant
mantissa digits contains an integer whose absolute
value is between 0 and 9999; its value
corresponds to four mantissa digits. The first
mantissa word is signed and, thus, contains the
mantissa sign. The second mantissa word may
contain a negative value; in this case, it doesn't
contain any significant digits and is disregarded
when constructing the internal representation of
the real constant. It serves as a terminator
word for the constant conversion routines. The
decimal point is defined to lie to the right of
the four digits in the last valid (used) mantissa
word. The digits in the last mantissa word are
left-justified. For example, if the real value is
1.1, the first mantissa word contains 1100
decimal (or 044C hexadecimal).

2-12 0400101:02A

Code File Format

Example:

1..4 significant mantissa digits:
The first mantissa word contains a signed
value between 0 and 9999. The second
word contains a negative value. The
implied decimal point position is at the end
of the first word.

5••8 significant mantissa digits:
The second mantissa word contains a
positive value between 1 and 9999, and
represents up to four low-order digits. The
first word contains a signed value between
1 and 9999; it represents the four
high-order digits. The implied decimal point
position is' at the end of the second word.

0400101:02A 2-13

Code File Format

A 64-bit real constant is represented by a record
whose length may vary between four and six
words, depending upon the number of significant
digits in the constant. The first two words of a
64-bit constant are identical in format to those
of a 32-bit real constant; thus, the format always
contains an exponent word and a first mantissa
word. An enumeration of the remaining words
for all cases follows:

1..4 significant mantissa digits:
Mantissa word 2 contains a negative
terminator. Word 3 is zeroed and is present
solely to provide sufficient space for the
native format.

5••8 significant mantissa digits:
Mantissa word 2 contains 1 to four digits
(left-justified). Word 3 contains a negative
terminator.

9••12 significant mantissa digits:
Mantissa word 2 contain four digits. Word 3
contains one to four digits (left-justified).
Word 4 contains a negative terminator.

13••16 significant mantissa digits:
Mantissa words 2 - 3 contain four digits.
Word 4 contains one to four digits. Word 5
contains a negative terminator.

17•• 20 significant mantissa digits:
Mantissa words 2 - 4 contain four digits.
Word 5 contains one to four digits.

2-14 0400101:02A

Code File Format

Real constants are converted to native
machine format when a code segment is loaded
into memory; this may result in a significant
run-time overhead for programs that are
memory bound. Time-critical programs of this
nature may sacrifice portability for execution
speed by using Real Convert utility to convert
their real subpools into native machine format
within the code file itself. This is done by
replacing the canonical form of each real
constant in the code file with a native real
constant. The modified subpool is merged with
the main pool by setting the real pool pointer
to zero, thus eliminating the usual conversion
process during a segment load. Because the
constant pool is transformed in place, constant
offsets embedded in the code file don't require
updating. (This, of course, reduces the
portability of the program.)

The Relocation List

The last (high address) body of information in a
code segment is the relocation list. The second
pointer at the beginning of the code segment
points to the last (highest address) word in the
relocation list. This pointer is a segment
relative word pointer; if there is no relocation
list, it is equal to zero.

0400101:02A 2-15

Code File Format

The relocation list contains all the information
necessary to fix any absolute addresses used by
code within the segment, whenever the segment
is loaded or moved in memory. Such absolute
addresses are needed only by native code.
Segments containing exclusively p-code are
completely position-independent; no relocation list
is needed.

A relocation list consists of zero or more
relocation sublists. Each sublist contains code
offsets for objects that must be relocated, and
specifies the type of relocation that must be
done. Sublists can occur in any order, and more
than one sublist can have the same type of
relocation.

The following code fragment shows the format of
the heading of a sublist:

Loc_Types=(Reloc_End, {signals end of entire relocation list}
Seg_Rel, {relative to address of base of this segment)
Base_ReI, {relative to data segment given in DATASEGNUM)
Interp_Rel,{relative to PME's interp-relative table}
Proc_Rel); {relative to address of 1st instruction in proc}

List_Header=PACKED RECORD
List_Size: integer; {number of pointers in sublist}
Data_Seg_Num: 0 .• 255; {local segment number for Base_ReI}
Reloc_Type: Loc_Types; {relocation type of sublist entries}

END;

Each sublist contains a List Header and zero or
more segment relative byte pointers to the
objects which must be relocated. The
Reloc_Type field in the List_Header defines what
kind of relocation will be applied to all objects
designated by the sublist.

2-16 0400101:02A

Code File Format

The relocation type Proc_Rel is generated by the
assembler, but is changed by the linker into
Seg_Rel. Proc_Rel sublists should never be
encountered when loading and relocating assembly
code.

The Data Seg Num field in the List Header is
only used in- sublists with a Reloc_Type of
Base ReI, and in all other cases should be
zeroed. It specifies the local segment number of
the data segment to which all the sublist's
pointers are relative. Since the assembler can't
know this segment number in advance, it should
zero-fill the field and leave the responsibility for
correctly setting this field to the linker.

The List Size field in the List Header contains
the number of pointers in the sublist.

Figure 2-3 illustrates a relocation list with
multiple sublists.

0400101:02A 2-17

Code File Format

high address

relocation
sublist

reloctype datasegnum

listsize

relocation pointers
relocation
list pointer

reloctype=
RELOCEND datasegnum=O

low address

Figure 2-3. Relocation List

2-18 0400101:02A

Code File Format

The relocation list is intended to be used from
high address down to low address. Each sublist
in turn is processed from high to low until a
sublist with a relocation type of Reloc_End is
encountered. The Data Seg Num and List Size
should be 0 for this terminating entry. -

The relocation list is located at the
code segment, since it is sometimes
discard the relocation information
segment has been loaded into memory.

Segment Reference List

end of the
possible to
after the

In the p-machine (described in the next chapter),
each code segment is associated at run-time with
an "environment vector" that defines the mapping
of each segment number to the segment or unit
that it designates. Each compilation unit has its
own independent (that is, local) series of segment
numbers, and its own environment vector. In this
way, a particular unit may be referenced by more
than one unit, and each unit that references it
may use a different segment number. (More
about environment vectors appears in the section,
"Code Segment Environments" in the next
chapter.)

0400101:02A 2-19

Code File Format

When a compilation unit references one or more
other compilation units, the principal segment of
the compilation contains a segment reference list.
This list defines the connection between the
segment numbers that appear in the object code
(they are created by the compiler), and the
names of the units to which they refer. Only
principal segments contain segment reference
lists.

The segment reference list, when present, is
located above the relocation list (it grows toward
higher memory addresses). The list is used by
the operating system at associate time. It
doesn't occupy any space in memory during the
program's execution (since the segment length
field doesn't include it).

The segment reference list associates the name
of each compilation unit (which doesn't change)
with the number by which that that compilation
unit is referenced.

The following fragment of Pascal code describes
a record in the segment reference list:

Seg_Rec= PACKED RECORD
Seg_Name: PACKED ARRAY rO •• 7] OF CHAR, {referenced segment name)

Seg_Num: 0 •• 255, {associated segment number}
Filler: O•• 255: {reserved for future use}

END,

2-20 0400101:02A

Code File Format

The Seg_Refs entry in the segment dictionary
(described below) contains the number of words in
the segment reference list. The Code Leng field
in the segment dictionary can be Used as a
segment relative word pointer to the start of the
segment reference list. The segment reference
list consists of one or more Seg_Rec's, starting
directly above the relocation lists (or procedure
dictionary) and continuing towards higher memory
addresses. A Seg Rec consists of Seg Name,
which contains the name of the segment;
Seg_Num, which contains the number by which
the segment is referenced within this current
code segment; and some filler.

The segment reference list is terminated by a
Seg Rec with a blank-filled Seg_Name and
segyum of zero.

Seg_Rec's with a Seg_Name of '***' are
generated so that the operating system can
execute the initialization and termination code
sections of a unit. Before executing a host
program, the operating system constructs a list of
all units used that contain a reference to '***',
and uses this list to execute the
initialization/termination sections of all such units
before/after the host program is invoked.

0400101:02A 2-21

Code File Format

When the initialization/termination section of a
unit (which is procedure 1) is compiled, the
following instruction is emitted between the
initialization and termination parts:

CXG <***'s Seg_Num>. 1

where CXG is the p-code representation of a
global procedure call. A local segment number is
reserved for the '***' segment reference, and the
operating system creates a linear list that links
together the units of a program that require
initialization. At the end of this list is the
outer body of the main program. The operating
system invokes the program by calling the first
initialization code on this list, which calls the
next, and so forth up to the body of the main
program. When the main program terminates, the
calling chain is "popped," and termination sections
are executed in the reverse order.

Linker Information

Linker information is a portion of a code segment
that allows the linker to resolve references
between p-code and native code. Segments
output by an assembler always have linker
information. Segments output by a compiler have
linker information only if they contain an
EXTERN AL routine. Only principal segments may
contain EXTERNAL routines.

2-22 0400101:02A

Code File Format

Linker information is a sequence of 8-word
records, starting on the block boundary following
the end (high address) of the segment reference
list. The end of the sequence contains the value
EOF Mark. Linker information records are
always eight words long; unused records and
unused fields are zero-filled.

If a code segment has linker information, the
Has Linker Info boolean in Seg Misc in the
segment dictionary is TRUE. The-starting block
of linker information, relative to the start of the
code file, can be calculated from the formula:

Code_Addr + «Code_Leng + Seg_Refs + 255) DIV 256)

where Code Addr, Code Leng, and Seg_Refs are
all values in-the segment dictionary (see below).

Two fields are common to all linker information
records. The Name field contains an 8-character
segment name. The LI_Type field determines the
nature of the linker information in the remainder
of the record.

0400101:02A 2-23

Code File Format

The following fragment of psuedo-Pascal code
describes a linker information record:

{an integral number of a-word pointer records}
{this is variable from record to record};

(EOF_MarK, Glob_Ref, Publ_Ref, Priv_Ref, Const_Ref,
Glob_Def, PUbl_Def, Const_Def, Ext_Proc, Ext_Func,
Sep_Proc, Sep_Funcl;

RECORD
Name: PACKED ARRAY rO .. 71 OF CHAR;
CASE LI_Type: LI_Types OF

Glob_Ref, PUbl_Ref, Const_Ref
(Format: (Word, Byte, Big);
N_Refs: integer);

Priv Ref: (Format: (Word, Byte, Big);
N_Refs: integer;
N_Words: integer);

Ext_Proc, Ext Func
(Src Proc: integer;
N Params: integer);

Sep_Proc, Sep_Func
(Src ProC: integer;
N_Params: integer;
Kool_Bit: boolean);

Glob_Def: (Home_Proc: integer;
IC_Offset: integer);

Publ_Def: (Base_Offset: integer;
PUb_Data_Seg: integer);

Const_Def: (Const_Val: integer);

EOF_Mark:
END {CASE);

Ptr_List: ARRAY[O .. Ptr_Rec_NumJ OF
ARRAY [0 .. 71 OF integer

2-24

END {LI_Entry};

0400101:02A

Code File Format

Glob Ref, Publ Ref, Const Ref, and Priv Ref are
linker information types generated - by an
assembler. Each consists of two fields that
precede a list (ptr_List) of segment relative byte
pointers into the associated segment. Format
contains the size of the fields pointed to by the
accompanying list. N Refs contains the number
of pointers in the list. ptr List contains
multiples of eight words; all unused words should
be zero.

For these types of linker information records,
Ptr_Rec_Num = ceiling(N_Refs/8), where ceiling(n)
is the smallest integer >= n.

Glob Ref is used to link identifiers in two or
more- assembled routines. Name is an identifier
that is referenced within the segment and defined
in some other assembled routine. Format should
always be word. The linker must add the final
segment offset of the referenced object to all
words pointed at by ptr List. This offset must
be in the correct addressing mode, that is, in
bytes or words, depending on the processor being
used.

0400101:02A 2-25

Code File Format

Publ Ref is used to link an identifier in an
assembled routine to a global variable in a
compilation unit. Name is an identifier that is
referenced in the segment and defined as a
global variable in some other compilation unit.
Format should always be word. The linker must
add the offset of the referenced object to all
words pointed at by Ptr List.

Const Ref is used to link an identifier in an
assembled routine to a global constant in a
compilation unit. Name is an identifier that is
referenced in the segment, and defined as a
global constant in some compilation unit. Format
may be either byte or word. The linker must
place the constant value into all locations
pointed at by Ptr_List.

Priv_Ref is used to allocate space in the global
data segment. Format should always be word.
N Words specifies the number of words to
allocate. The linker must add the offset of the
start of the allocated area within the global data
segment to all words pointed at by ptr_List.

Ext Proc and Ext Func are generated by a
com-piler to reference EXTERNAL routines.
There is no ptr List. Src Proc is the number
assigned to the routine. N_Params is the number
of words allocated for parameter passing.

2-26 0400101:02A

Code File Format

Sep Proc and Sep_Func are generated by an
assembler for routine declarations. There is no
ptr List. Src_Proc is the number assigned to the
routine. N Params is the number of words
allocated for - parameter passing. Kool Bit is
TRUE if the routine is relocatable, and -FALSE
otherwise. Thus, with Kool Bit = FALSE, and
.RELPROC and .RELFUNC generate Sep Proc or
SepFunc records with Kool_Bit = TRUE. -

Glob Def declares a global identifier in an
assembled routine. A Glob Def record is
generated for each label defined by a .DEF,
.PROC, .FUNC, .RELPROC, or .RELFUNC
directive. There is no ptr List. Name is an
identifier defined within the segment, and may be
referenced by any other assembled routines within
the same segment. Home Proc contains the
number of the routine in which Name is defined.
IC_Offset is a byte offset to Name, relative to
the start of the routine in which Name is
defined.

Publ Def declares a global variable in a
compilation unit. A PUbl_Def record is generated
for each global variable in a compilation unit
that is visible to any EXTERN AL routines.
There is no ptr List. Base Offset is the word
offset of the variable, relative to the start of
the data segment that contains it. Pub Data Seg
is the local number of the data segment that
contains the variable.

0400101:02A 2-27

Code File Format

Const Def declares a global constant in a
compilation unit. A Const Def record is
generated for each global -constant in a
compilation unit that is visible to any
EXTERNAL routines. There is no ptr List.
Const Val contains the value of the constant:

EOF Mark indicates
information records.

the end of used linker
Name should be blank-filled.

The following table shows the types of segments
(as defined in the segment dictionary), and the
types of segment reference records that can be
contained in the associated linker information.
Note that Proc Seg's can't have linker
information at all. -

Prog_Seg Unit _Seg Seprt_Seg

Glob- Ref yes
Publ - Ref yes
Priv_Ref yes
Const - Ref yes
Ext_Proe yes yes
Ext_Fune yes yes
Sep_Proe yes
Sep_Func yes
Glob_Def yes
publ_Def yes yes
Const_Def yes yes
EOF_Mark yes yes yes

2-28 0400101:02A

Code File Format

CODE FILE ORGANIZATION

The Segment Dictionary

The first block of a code file contains the first
record of that file's segment dictionary. A
segment dictionary consists of a linked list of
dictionary records; if the dictionary is longer
than one record, subsequent records are embedded
in the code file. These are each one block long,
and are located between code segments.

A single dictionary record can describe up to 16
distinct segments. The information describing a
segment is contained in six different arrays; the
information describing a segment is found by
using a single index value to select a component
from each of these arrays. Entries in the
segment dictionary describe only segments whose
code bodies are included in the code file.

0400101:02A 2-29

{segment type I
{reserved for future use}
{need to be linked?)
{segment relocatable?)

{local segment number}
{machine typel
{reserved for future use}
{p-machine version}

{data size}
{segments in compilation unit}
(number of segments in file)
{t of blks interface textl

Code File Format

The following fragment of Pascal code describes
a segment dictionary record:

CONST Max-Dic-Seg • 15; {maximum segment dictionary record entry}

TYPE Seg_Dic-Range· O•. Max_Oic_Segl (range for segment dictionary entries)

Segment_Name. PACKED ARRAY 10 •• 7] OP CHAR; {segment namel

{segment types I
Seg_Types • {No-seg, {empty dictionary entry I

Prog-Seg, {program outer segment}
unit_Seg, {unit outer segment}
Proe_Seg, {segment procedure inside program or unit}
Seprt_Seg)i {native code segment}

{machine typesl
"_Types· C"_Psuedo, "_6809, "_PDP_II, "_8080, "_Z_80,

"_GA-440, "_6502, "_6800, "_9900,
"_8086, "_Z8000, "_68000, "_HP87);

{p-machine versions}
Versions· (Unknown, II, II_I, III, IV, v, VI, VII):

{segment dictionary recordl
Seg_Dict • RECORD

Disk_Info:
ARRAY ISeg_Dic-RangeJ OF {disk info entriesl

RECORD
Code~ddr: integer; {segment starting block}
Code-Leng: integer; {number of words in segment}

END (of RECORD);
Seg_Name:

ARRAY [Seg-Dic-Rangel OF Segment_Name; {segment name entries}
Seg_Mise:

ARRAY ISegJ)ic-Rangel OF {misc entr iesJ
PACKED RECORD

Seg_Type: Seg_Types;
Filler: 0.. 31;
Has-Link_Info: boolean:
Relocatable: boolean;

END {of PACKED RECORDI;
Seg_Text:

ARRAY ISeg_Dic_Rangel OF integer, {start blk of interface textl
Seg_Info:

ARRAY lSeg_Dic_Rangel OF {segment information entries}
PACKED RECORD

Seg_Num: 0 •• 255,
"_Type: "_Types;
Filler: 0 •• 1;
Major_Version: Versions;

END {of PACKED RECORDI;
Seg_Famly:

ARRAY !Seg_Dic-Rangel OF {segment family entries!
RECORD

CASE seg_Types OF
Unit_Seg, Prog_Seg:

(Data_Size: integer;
Seg_Refs: integer;
Max_Seg_Num: integer;
Text_Size: integer);

Seprt_Seg, Proc-seg:
(Prog_Name: Segment_Namel, {outer program/unit namel

END {of Seg_Famlyl;

2-30 0400101:02A

Code File Format

Next_Dict~ integer; {block number of next dictionary record}
Filler: ARRAY [1 •• 21 OF integer;
Checksum: integer; {see OuickStart in Chapter 6J
Ped_Block: integer; {see QuickStart in Chapter 6}
Ped_Blk_Count: integer; (see OuickStart in Chapter 6)
part_Number: RECORD

A, B: integer;
END:

Copy_Note: string1771; (copyright noticel
Dict_Byte_Sex: integer; {machine sex (Sex z 1)1

END (of SEG_D1CT);

Disk Info contains information about the
segment's location within the file. Segment code
always starts on a block boundary. Code Addr is
the number of the block where the segment code
starts (relative to the start of the code file).
Code Leng is the number of 16-bit words in the
segment. This size includes the relocation list
but doesn't include the segment reference list.
All unused entries in this array should be zeroed.

Seg_Name contains the first eight characters of
the program, unit, segment, or assembly procedure
name. Unused entries should be blank-filled.

Seg_Misc contains miscellaneous information about
the segment. Seg_Type indicates the type of
segment. Prog_Seg and Unit_Seg are outer
segments of programs and units, respectively.
Proc_Seg is a segment routine within either a
unit or a program outer segment. Seprt_Seg is
an unlinked native code segment. Has_Link_Info
indicates whether linker information has been
generated for this segment. Linker information
resides in the blocks that directly follow the
segment reference list. Linker information starts
on a block boundary. The Boolean Relocatable
specifies whether a code segment is statically or
dynamically relocatable.

0400101:02A 2-31

Code File Format

Dynamically relocatable code segments reside in
the code pool (described in the next chapter);
their position in memory may change many times
during execution. Statically relocatable code
segments are loaded only once, in a fixed
position on the system heap (also described in the
next chapter); they remain position-locked and
memory-locked throughout their lifetime.

All segments that contain only p-code are
position-independent and, thus, dynamically
relocatable. Segments that contain native code
may be dynamically relocatable provided they
make no assumptions about either the lifetime of
any modifications made to the segment body
itself or to the exact location of the segment
body in memory across the execution of a single
p-code.

Dynamically relocatable native code is generated
by assembling routines using the RELPROC or
RELFUNC assembler directives; a linked code
segment containing assembler routines is
dynamically relocatable only if all of its
assembler routines were originally specified as
dynamically relocatable. Note that the use of
these assembler directives is an assertion by the
programmer that the routines declared behave
properly; the system doesn't enforce this, so
caution must be used. If a routine is to be
dynamically relocatable, you can't expect it to
store information in the segment body, be
self-modifying, or store pointers to the code
segment in data variables, and then assume that
things will proceed correctly the next time the
routine is called.

2-32 0400101:02A

Code File Format

The Boolean Relocatable is unaffected by the
presence or absence of relocation lists, and isn't
relevant to concurrency considerations.

Seg_Text contains the starting block of the
segment's INTERFACE text section, relative to
the start of the code file. The INTERFACE text
section can appear anywhere within the code file
that contains the code segment it describes. The
Seg_Text array entry, in conjunction with the
Text_Size field in the Seg_Family record,
indicates the address and length of the
INTERFACE section in blocks. The INTERFACE
text section alVlays starts on a block boundary
and follows all of the conventions of a text file
with the exception that the last page of the
section may be either one or two blocks long.
Only segments with a Seg_Type of Unit_Seg have
INTERFACE sections. All other segments and
unused entries should be zero-filled.

Seg_Info contains further information about the
segment. Seg_Num is the segment number.
M_Type tells what kind of object code is in the
segment. If there is any native code in the
segment, then M_Type will have one of the
processor-specific M_Type's. If the segment
consists exclusively of p-code, then its M_Type is
M Psuedo. Major Version gives the version of
the p-machine on which the code file is intended
to run.

0400101:02A 2-33

Code File Format

Seg Famly contains information about the code
segment's compilation unit. The information
contained in this array depends on whether
Seg_Type indicates a principal or a subsidiary
segment.

If the segment is a sUbsidiary segment, then
Seg_Famly contains the first eight characters of
the parent compilation unit's name, stored in
Prog Name. If this name isn't known at code
file -generation time (as is the case with
Seprt_Seg's), the field should be blank-filled.

If the segment is a principal segment, then the
information in Seg_Famly consists of four fields:

• Data Size is the number of words in this
segment's base data segment. The variables
of principal segments are referenced from any
location, including their own outer routine
bodies, via global loads and stores (rather than
local operations). Therefore, the Data Size
field associated with the body of an outer
routine in a code segment should be zero, so
that no superfluous memory will be allocated
in an unused local data area.

• Seg_Refs is the size in words of the segment
reference list for this segment.

• Max_Seg_Num is the total number of segment
numbers assigned to this compilation unit.
Max Seg Num includes all segments with
assigned -numbers, regardless of whether the
segment body is contained in this file or not.

2-34 0400101:02A

Code File Format

• Text Size is the number of blocks of
INTERFACE text within the compilation unit.
Text_Size is used in conjunction with the
Seg_Text array to specify the INTERFACE
text for a compilation unit of type Unit_Seg;
it is zero-filled for all other compilation unit
types.

If the segment is unused (Seg_Type = No_Seg),
then Seg_Famly should be zero-filled.

Next Dict contains
segment dictionary
of the code file.
segment dictionary,

the block number of the next
record, relative to the start

In the last record of the
Next Dict should be zero.

Part Num contains the SofTech internal part
number for the file.

Filler is reserved for future use and should
always be zero-filled.

Copy_Note is reserved for a copyright message,
which can be created with either the LIBRARY
utility or a compiler directive.

0400101:02A 2-35

Code File Format

Sex corresponds to the byte sex of the segment
dictionary. It is a full word that contains the
value 1, with the same byte sex as the rest of
the dictionary record. Thus, when this word is
examined by a program running on a machine
with the same byte sex as the code file, it will
appear as a 1; on a machine of opposite sex, it
will appear as a 256. System programs use this
word to detect the sex of the dictionary, and, if
necessary, byte-swap the word-oriented fields of
the dictionary.

Assembler-Generated Code Files

Code files generated by an assembler have a
slightly different structure from those generated
by a compiler. A relocation list is generated for
each procedure in an assembler-generated segment
(instead of one relocation list for the whole
segment). These are the only sort of lists that
may contain Proc_Rel relocation. These lists are
placed immediately after the body of the
procedure they describe. The start or high end
address of each list is pointed at by the segment
relative word pointer contained in the Exit IC
field of each assembler-generated procedure.

2-36 0400101:02A

Code File Format

An assembler-generated segment is also unique in
that during the linking process, the code bodies
of all its procedures and functions may be copied
into one of the segments of the compilation unit
to which it is being bound. Further, the name of
the segment or segments that the assembly code
may be linked to is never known at assembly
time. It is, however, always assumed that any
number of assembly procedures or functions that
communicate via REFs and DEFs are always
bound into the same segment, regardless of
whether they were assembled together.

The Data_Size word generated by the assembler
for each routine should have a value of -1
(OFFFF HEX); this indicates a data size of zero
that is one's complemented, to signal that the
first instruction of the code body is native code.

Finally, since the assembler-generated code
segments can't know what program or unit they
are to be linked to, the Prog_Name entry in the
Seg_Famly array of the segment dictionary should
be blank-filled, and the Data Seg Num field in
the List Header record of all Base -ReI relocation
sublists should be zero-filled.

0400101:02A 2-37

Code File Format

It is the linker's responsibility, when linking
assembler-generated segments, to convert all
Proc ReI relocation sublists into Seg_Rel
relocation lists, to correctly set the
Data Seg Num field in the List Header of all
Base -Rel- relocation sublists, and- to collect all
relocation sublists and place them after the
procedure dictionary of the code segment. The
linker should also update the Relocatable bit in
the Seg Misc array, depending on the information
supplied-in linker information.

2-38 0400101:02A

p-machine

CHAPTER 3

THE P-MACHINE

The P-Machine

OVERVIEW

The p-machine is an idealized machine. Compiled
user programs, system programs such as the filer,
and the operating system itself run on the
p-machine. Code for the p-machine is known as
p-code, and all code files in the system consist of
either p-code or native code (that is, code for a
particular physical processor).

P-code is designed to be compact, so that programs
in p-code are much shorter than equivalent
programs in native code. P-code is also designed
to be easily generated by a compiler.

Because p-code is compact and simple, relative to
native codes, it's fairly easy to implement the
p-machine on a variety of actual processors. It is
also easier (and cheaper) to maintain a system that
runs on one p-machine, rather than a family of
systems, each dedicated to a particular physical
processor. This is the key to the portability of the
p-System.

0400101:03A 3-3

The P-Machine

Emulative Execution

The "p" in "p-code" and "p-machine" stands for
"pseudo." The p-machine emulator program is
written in the native code of a particular
processor. It is responsible for executing p-code
instructions and controlling machine-dependent
I/O. The p-machine emulator is also called the
PME (or the interpreter).

At run-time, the user's program (or a portion of
it) is in main memory. The PME fetches each
p-code instruction, in sequence, and performs the
appropriate action.

The process of bootstrapping involves loading the
PME (if necessary) and starting its execution.
(The next step is to call the operating system,
which runs on the p-machine).

The Stack and the Heap

The system maintains data in two dynamic
structures called the stack and the heap. The
stack is used for static variables, bookkeeping
information about procedure and function calls,
and evaluation of expressions. The heap is used
for dynamic variables, including the structures
that describe a program's environment. It is also
used to store private stacks for SUbsidiary
processes and to store code segments that are
position-locked.

3-4 0400101:03A

The P-Machine

The stack is an integral part of the p-machine
architecture. Most p-code instructions affect the
stack in one way or another.

The heap is an integral part of the system, but
is primarily supported by the operating system,
rather than the p-machine.

Both the stack and the heap reside in main
memory, and grow toward each other in a
(largely) first-in-first-out manner. Between them
is an area of memory that is partly unused, but
may contain the code pool (see below).

The heap is more fully described in Chapter 5,
"The Operating System."

Code Segments

In the p-System, program code is stored in one or
more segments. A code segment may contain
either p-code or native code (or both). Besides
the code itself, each code segment contains
bookkeeping information for the system's use, and
(usually) a pool of constants.

Every "compilation unit" (a separately compiled
Pascal PROGRAM or UNIT) results in a "principal
segment" of code. In addition, there may be
"SUbsidiary segments," if the program or unit
contains SEGMENT routines. Information
embedded in the compilation's code file contains
the references among the (possibly) various
compilation units that are part of the full
program.

0400101:03A 3-5

The P-Machine

When a program is X(ecuted, the operating system
reads this reference information and resolves the
references by finding the location of all
compilation units needed by the program
(including subsidiary segments and indirect
references, such as a UNIT using another UNIT).
Tables are built that may be used at run-time to
make references (such as procedure calls) from
one segment to another.

The segments of a running program compete for
space in main memory with each other. If the
code pool is internal (between the stack and
heap), then the segments also compete with the
stack and the heap. The principal constraint (as
far as code segments are concerned) is that both
the calling and called segment must be present in
main memory for an intersegment call to succeed.

Segments in main memory are stored contiguously
in an area called the code pool. On nonextended
memory systems, the code pool resides between
the stack and the heap (an internal code pool).
On extended memory systems, the code pool
resides outside of the stack/heap area (an
external code pool). The code segments may be
moved about vrithin the code pool or discarded in
order to create more room.

Code segments are described in this chapter.
Code pool handling is described in Chapter 5,
"The Operating System."

3-6 0400101:03A

The P-Machine

Device I/O

Device I/O and control is accomplished by calls
from the language level to routines within the
PME. The device I/O routines then. call on the
routines of the PME's BIOS (for Basic I/O
~ubsystem), and the BIOS routines control the
peripheral hardware directly. I/O environment
dependencies are, thus, isolated in the BIOS, and
it is possible to adapt the p-System to a new
hardware environment by changing only the BIOS
(not the entire PME).

On adaptable systems, the BIOS itself has a
standard interface to the SBIOS, or Simplified
BIOS. The SBIOS is a set of simple I/O-routines,
and is intended to allow the user to rapidly
adapt the system to a new I/O environment.

The BIOS is dealt with in Chapter 4, "Low-Level
I/O." The SBIOS is described in the Adaptable
System Installation Manual.

0400101:03A 3-7

The P-Machine

CODE SEGMENT ENVIRONMENTS

Segment Information Blocks (SIBs)

A Segment Information Block (SIB) is a record
that contains information about an "active" code
segment. A code segment is active if it may be
used by a program that is running. A SIB is
allocated on the heap, and remains there as long
as the segment is active. There is only one SIB
for each code segment, no matter how many
other segments may be using it.

A code segment need not be in memory to be
active; an active code segment may be on disk or
in the code pool, but its SIB will always be on
the heap. One exception to this is that some
operating system segments may be allocated
outside of the stack/heap space by the bootstrap.

3-8 0400101:03A

The P-Machine

The following fragment of Pascal code describes
a SIB:

SIB = RECORD
Seg_Pool: Pool_Pte; {points to the description of the code pool

where the segment resides}
Seg_Base: Hem-Pte; {byte offset within code pool of segment's

memory location}
Seg-Refs: integer; {t of active calls to the seg}
Time_Stamp: integer; {memory swap activity}
Link_Count: integer; {number of links to the SIB}
Residency: -!.amaxinti{-! = pos lock, 0 = swap, n = mem lock}
Seg_Name: PACKED ARRAY rO •• 7J OF CHAR;
Se9_Leng: integer; {t of words in segment}
Seg_Addr: integer; (disk address of segment)
Vol_Info: VIP; {pointer to disk drive infol
Data_Size: integer; {number of words in data segment}
ReS_SIBS: RECORD {code pool management record}

Next_SIB, {next SIB in list}
Prev_S-IB: SIB_P; {previous SIB in list}
CASE boolean OF {scratch area}

TRUE: (Next_Sort: SIB_P); {next SIB in sort list}
FALSE: (New_Loc: Mem_Ptr); {temporary address}

END {of Res_SIBs};
"_Type: integer;

END (of SIB);

Seg_Pool points to the description of the code
pool where the segment resides. If the segment
is on the heap (or if there is no external code
pool), this value is set to NIL. (A Pool ptr is
declared as a "Pool_Des.)

Seg_Base contains the byte offset within the
code pool of the code segment. If there is no
external code pool, Seg Base contains the address
of the segment within the stack/heap area. If
the code segment isn't in memory, Seg_Base
contains NIL.

0400101:03A 3-9

The P-Machine

Seg Refs contains the number of outstanding calls
to the segment. It is incremented whenever a
routine outside the segment executes an external
call to a routine within the segment. It is
decremented whenever a routine within the
segment returns to a routine outside the segment.

Time_Stamp contains a value which is used by
the operating system to determine which
segment(s) should be removed from the code pool
when more space is required. The Time_Stamp
field indicates which segment is least recently
used. The SYSCOM area, within the operating
system's KERNEL, contains a 16-bit variable
which is incremented every time a segment is
exited. This value is placed into the Time_Stamp
field of the SIB for the segment being exited.

Link Count contains the number of links to the
SIB from other operating system data structures.
When Link Count becomes zero, the SIB is
removed fro-m the heap (the space it occupied is
available again).

3-10 0400101:03A

The P-Machine

Residency contains a value between -1 and
maxint. A -1 indicates that the segment is
position-locked (this occurs when the Boolean
Relocatable in the segment dictionary is FALSE).
A zero indicates that the segment is wwappable
(that is, it can be removed from memory if
necessary). A value greater than zero indicates
that the segment is memory-locked. In this case,
the value is a count of the number of memory
lock operations that have been applied to that
segment. Residency is incremented when a
program declares the segment to be
memory-locked, and decremented when a program
declares it to be swappable. It becomes actually
swappable when residency is equal to zero (that
is, when no outstanding memory-lock operations
remain). Programs can control the residency of
segments by using the intrinsics MEMLOCK and
MEMSWAP.

Seg Name contains the first eight characters of
the -segment's name.

Seg_Leng contains the number of words that the
code segment occupies (including any relocation
lists, but excluding segment reference lists).

Seg_Addr contains the segment's first block
number on disk.

Vol Info contains a
information record that
and volume name of
segment is resident.

0400101:03A

pointer to a volume
contains the drive number
the disk on which the

3-11

The P-Machine

Data Size contains the number of words in the
code -segment's data segment. This only applies
to principal segments; otherwise, Data Size should
be zero.

Res SIBs is used to maintain the code pool. All
SIBs- of segments in the code pool are on a
doubly-linked list formed by the Prev_SIB and
Next SIB pointers. The Sort SIB and New Loc
fields are used for temporary values while
managing the code pool.

The operating system uses several data structures
to manage code segments by maintaining active
SIBs and managing the code pool. All of these
data structures refer to SIBs through pointers.

When a program being prepared for execution
requires a code segment that isn't yet active, the
appropriate SIB is allocated on the heap and
initialized. The operating system creates a
pointer to the SIB, and the SIB's Link Count is
incremented. When the segment is no longer
needed, the pointer is removed, and the
Link Count is decremented. When Link Count
becomes zero, the SIB is removed from the -heap.

3-12 0400101:03A

The P-Machine

Environment Records (E_Recs)

A code segment's "environment" is a mapping of
segments it may access to local segment nurrlbers.
Segment numbers have local meaning; a segment
may refer only to segments that have been
assigned local segment numbers-not to segments
outside its scope.

For each segment, there is an Environment
Record (E_Rec). This record designates an
Environment Vector (E Vect) that describes the
mapping of loeal segment numbers to actual code
segments.

The following fragment of pseudo-Pascal describes
environment records and vectors:

E_vect_p z ~E_Vect;

E_Rec_P : "E_Rec:

E_Vect : RECORD
Vec_Length: integer; (number of local segments)
Map: ARRAY [1 •. Vec_Length! OF E_Rec_P:

{local environment mapping!
END {of E_Vectl:

: RECORD
Eov_Data: Mem_ptc;
Env_Vect: E_Vect_p:
Env_SIB: SIB_Pi
CASE boolean OF

TRUE: (Link_Count:
NextJec:

END {of E_Rec!:

(pointer to global data)
{pointer to environmentl
{pointer to SIB for seg number!

integer: (number of links to E_Rec!
E-Rec_P): {next environment record!

Env Data points to the segment's global data.
(The data is allocated on the heap when the
program is executed.)

0400101:03A 3-13

The P-Machine

Env_Vect is an array of pointers to E_Rec's. It
is indexed by a segment number-the pointer
indicates an E Rec that describes a code
segment. In this way, a mapping from local
segment numbers to actual segments is
accomplished.

Env SIB points to the segment's SIB. (It is also
placed on the heap when the program is called.)

Link Count indicates the number of active
compilation units that are currently USEing the
segment. This only applies to the principal
E Rec of a compilation unit. Link Count is
maintained in the same way a SIB's Link Count is
maintained.

Next Rec is a pointer on a chain of all active
compilation units. This chain is called Unit List.
This field also applies only to the principal
E_Rec's of a compilation unit.

In order to minimize index manipulations, the Map
array in an E Vect record starts at 1. Thus, it
may be indexed by local segment numbers (these
must be 1 or greater). The Vec_Length field of
the record may be considered to occupy the
zero'th position of the map.

3-14 0400101:03A

The P-Machine

The operating system uses a recursive routine to
construct the environments of a program's USEed
units, and then its subsidiary segments and
principal segment (its "native segments"). The
algorithm is roughly:

FUNCTION Build_Env (Seg_Dict): E_Rec_P;
BEGIN
IF outer block segment E_Rec exists in Unit_List
THEN

BEGIN
increment Link_Count;
return existing E_Rec_P

END
ELSE

BEGIN
create E_Vect;
create Env_Data for .outer block data space;
IF there are USEd units indicated in Seg_Dict THEN

FOR all USEed units DO
install Build_Env (New_Seg_DictJ into current E_Vect;

FOR all native segments DO
BEGIN

create E_Rec and SIB for native segment;
install E_Vect, SIB, and Env_Data in E_Rec;
install E_Rec for native segments in E_Vect

END;
install E_Rec for outer block segment on Unit_List;
return E_Rec_P for outer block segment

END
END

The Build Env function returns a pointer to the
E_Rec for the outer block of the program being
executed. This pointer is installed into the
operating system's User_Program E Vect entry.

0400101:03A 3-15

The P-Machine

After a program's execution, a recursive routine
is used to delink the environment for the
program's outer block and all subsidiary units and
segments. The algorithm is roughly:

PROCEDURE Dump_Env (E_Rec_P);
BEGIN
decrement Link_Count;
IF Link_Count = 0 THEN
BEGIN

de_link from Unit_List;
DISPOSE (Env_Data);
FOR all E_Rec's on E_Vect whose

Seg_Vect <> E~Rec.Seg_Vect DO
Dump_Env (those E_Rec's);

FOR all E_Rec's on E_Vect whose
Seg_Vect = E_Rec.Sec_Vect DO

BEGIN
de_link E_REC·.SEG_SIB;
DISPOSE (those E_RECs);

END;
DISPOSE (E_Rec.Seg_Vect);

END
END

The operating system sets its E_Vect entry for
the terminating program to NIL, and calls
Dump Env for the outer block's E Rec. After
Dump-Env returns, a pass is made through the
Res SIBs list to find all segments whose
Link-='Count = 1, and remove them from the heap.

3-16 0400101:03A

The P-Machine

TASK ENVIRONMENTS

A task is a routine that is executed concurrently
with other routines. A task is implemented by
three data structures: the body, the Task
Information Block (TIB), and the task queue. In
Pascal, a task is known as a PROCESS.

The "main task" of the p-System is the thread of
execution that runs from operating system
initialization and all system utility or user program
executions to the termination of the operating
system. A program may have sUbsidiary tasks.

During execution, each subsidiary task uses its own
stack instead of the system stack. The task's
activation record (described later in this chapter) is
actually contained in the task stack; both are
allocated on the heap, along with an amount of
free space into which the stack may grow.

The task body is a portion of a p-code segment.
In structure, it's no different from the body of a
procedure or function.

The amount of space allocated to the task stack
depends on the Stack Size parameter of the START
intrinsic. The default is 200 words.

The main task uses the system stack for expression
evaluation and activation records. The heap is
shared by the main task and all subsidiary tasks.

0400101:03A 3-17

The P-Machine

The TIB of a subsidiary task is allocated on the
heap when the task is started. It contains
information about a task's execution environment.
This must be maintained, and restored whenever a
task is restarted after having been idle.

At any given time, the p-machine may have:

one task running;
several tasks ready to run; and
several tasks waiting for semaphores.

The tasks that are ready to run are organized into
a queue. There is also a queue of tasks waiting
for each semaphore (the queue may be empty).
Tasks in queues are ordered by their priority.

The p-machine register CURTSK always points to
the TIB of the currently executing task. The
register READYQ points to the first in the list of
tasks ready to run.

3-18 0400101:03A

The P-Machine

The following fragment of Pascal code describes a
TIB:

TIB = RECORD ITask Information Block}
Regs: PACKED RECORD

Wait_Q: TIB_ptr;
Prior: byte;
Flags: byte;
SP_Low: Mem_Ptr;
SP_Upr: Mem_ptr;
SP: Mem_ptr:
MP: MSCW_Pt r ;
Reserved:Integer
IPC: integer;
Env: ERec_pt r ;
Proc_Num: byte:
TI_BIOResult: byte;
Hang_Ptr: Sem_ptr;
M_Depend: integer;

END lof Regs}
Main_Task: Boolean;
Start_MSCW: MSCW_Ptr;

END lof TIB}

SP is the p-machine stack pointer. SP Low and
SP_Upr are the lower and upper bounds- for this
task.

MP designates the local activation record for this
task.

IPC is the p-code instruction counter (a segment
relative byte pointer), and Proc Num is the number
of the executing routine.

Priority contains the task's
number from 0 through 255.
the greater the priority.

priority. This is a
The higher the value,

Wait Q is used when the task is waiting to run, or
waiting for a semaphore. Wait_Q is one link in a
linked list of TIBs.

0400101:03A 3-19

The P-Machine

When a task is waiting for a semaphore, Hang_Ptr
points to that semaphore. If the task isn't waiting
for a semaphore, Hang Ptr is NIL. Hang ptr
allows a task to be removed from a semaphore's
wait queue if the task is being terminated.

Flags are reserved for future use.

Env is a pointer to the task's current E Rec. The
task's current SIB may be found through the E Rec.

TIBIa Result is used to save an IORESULT that is
local to the task.

M Depend contains machine-dependent data
maintained by the PME. It is initialized to O.

Main Task, if TRUE, indicates that this is the TIB
of a "root" ("parent") task.

Start MSCW points to the MSCW (mark stack
control word) of the routine that STARTed this
task.

Further information about tasks appears below in
Chapter 5, "The Operating System." Figure 3-1
shows the layout of main memory while the system
is running, including the location of task stacks as
discussed in this section.

3-20 0400101:03A

OPERATING SYSTEM
(subset always resident)

high address
odd

The P-Machine

even

low address

STACK

HEAP

PROCESS1 STACK

GLOBAL DATA SEG1

GLOBAL DATA SEG2

INTERPRETER

MAIN MEMORY USAGE
(Non-Extended Memory)

Figure 3-1. Main Memory Usuage

0400101:03A 3-21

The P-Machine

P-MACHINE INSTRUCTIONS

The Intrinsic P MACHINE

A Pascal compilation unit may directly generate
in-line p-code. This is done by calling the
intrinsic procedure P MACHINE. Producing
in-line p-code may be useful in very low-level
system programming. Absolutely no protection
is provided by this intrinsic or the system; it can
only be used at the user's risk, and extreme
caution should be exercised.

The form of a call to P MACHINE may be
sketched as follows:

P_MACHINE (<p-machine item) {, <p-machine item»))

that is, the parameters to the procedure are a
list of one or more <p-machine item>s. A
<p-machine item> describes a portion of p-code,
and causes one or more bytes to be generated.

There are three varieties of <p-machine item>:

1. P-code syllable: The simplest item is a
(non-real) scalar constant. This item produces
a single byte of p-code, which is the least
significant byte of the specified constant.

3-22 0400101:03A

The P-Machine

2. Expression value: If the item is an expression
enclosed in parentheses, then a p-code
sequence is generated which will compute the
value of the expression and leave it on the
stack.

3. Address reference: If the first token of the
item is ''''', then the item is the specification
of a variable, and p-code is generated which
leaves the address of that variable on the
stack.

A <p-machine item> may not be a string
constant.

0400101:03A 3-23

The P-Machine

EXAMPLE:

Given these declarations:

CONST STO = 196;

TYPE Records = RECORD
First_Field, Second_Field: integer

"NO;
P_Records = ARecords;

VAR Vector: ARRAY [0 •. 9] OF P_Record;
i: integer;

... the following call to P_MACHINE

P_MACHINE ('Vector [5]' .First_Field, (i*U, STO)

would cause the square of "i" to be stored in the
first field of the record designated by the sixth
element of the array Vector.

3-24 0400101:03A

The P-Machine

P-MACHINE REGISTERS

Like other processors, the p-machine has registers
which are a fundamental part of its architecture.
Since the p-machine is usually emulated by a
program on a host processor, these registers mayor
may not correspond to actual host processor
registers.

Unlike most processors, the p-machine doesn't allow
its registers to be used in a general fashion. All
registers have specific uses. The p-machine stack
takes the place of general purpose registers; all
temporary data is stored there.

Here is a list of the p-machine registers, along
with a description of how they are used. All the
registers listed below are required registers that
will be found on each p-machine. They are the
registers that may be accessed via the LPR (Load
Processor Register) and .SPR (Store Processor
Register) instructions. Some p-machines may have
additional registers for optimization. These will be
mentioned below where appropriate.

CURPROC

The CURPROC register contains the procedure
number of the currently executing procedure. It
changes whenever a procedure call is made.
There is a maximum of 255 procedures per
segment, so CURPROC will have a value in the
range 1 through 255.

0400101:03A 3-25

The P-Machine

CURTASK

The CURTASK register is a pointer to the TIB
of the currently executing task. It changes
whenever a task switch occurs.

EREC

The EREC register is a pointer to the E_Rec
(Environment Record) of the current environment.
It changes whenever a call or return is made to
a procedure in a different segment. The E Rec
contains pointers to the global data, EVEC- and
SIB. Often the pointer to the global data is
kept as a register called BASE. Also, a pointer
to the SIB may be kept as a register called SIB,
and the location in memory of the current
segment (found in the SIB) may be kept as a
register called CURSEG. If BASE, SIB, or
CURSEG are kept as auxiliary p-machine
registers, they must be updated whenever EREC
is changed.

EVEC

The EVEC register is a pointer to the E Vect
(Environment vector) of the current environment.
It changes whenever a call or return is made to
a procedure in a different segment. The EVEC
is a redundant register, because the E_Vect may
be found through the EREC register. The EVEC
register is used to find the E Rec of a different
segment in order to access its data or to call a
procedure in that segment.

3-26 0400101:03A

The P-Machine

IORESULT

IORESULT contains the code resulting from the
last I/O operation. This is the only register that
may be accessed directly (without a Load
Processor Register instruction) by the operating
system since it is located in SYSCOM.
IORESULT changes whenever it is modified by
the operating system, or whenever an I/O
operation occurs. IORESULT is limited in size to
the range 0 through 255.

IPC

The IPC register is a pointer to the next p-code
that will be executed relative to the currently
executing segment. It changes during each
p-code execution.

MP

The MP register points to the current activation
record (MSCW). It changes whenever a procedure
call or return is made. All variables (except
those that have been dynamically allocated on
the heap) are accessed from an MSCW. Local
variables are accessed from MP, global variables
from BASE (see EREC, above), and intermediate
variables from an intermediate MSCW.

0400101:03A 3-27

The P-Machine

READYQ

The READYQ register points to the TIB at the
head of the queue of tasks ready to be run. It
may change on a SIGNAL or WAIT p-code, or
when an attached semaphore is signalled.

SP

The SP register points to the word that is on the
top of the p-machine stack. It changes on nearly
every p-code, whenever an item is pushed on or
popped off the stack.

3-28 0400101:03A

The P-Machine

FAULTS

A fault is a special condition recognized by the
PME during execution of a p-code that requires
operating system assistance to fix. After handling
the problem, the operating system returns to p-code
execution where the fault was detected. The
p-code where the fault was detected is reexecuted.

Two types of faults may be issued by the PME:
segment faults and stack faults. A segment fault
is issued when a segment that must be accessed
isn't in memory. A stack fault is issued if there
isn't enough room on the stack for a p-code to
perform its operation. Stack height checking is
done only on p-codes that will place multiple words
on the stack, except in the case of real number
operations, which do no stack checking.

When the fault is detected, the p-machine must be
returned to the state it was in prior to execution
of the p-code. This is so that the p-code may be
reexecuted on return from the fault.

The fault is issued by saving information in
SYSCOM, then signalling the semaphore Real Sem in
SYSCOM. This signal starts the high priorITy task
Fault Handler in the KERNEL, which processes the
fault.-

0400101:03A 3-29

The P-Machine

The following fields in SYSCOM with the indicated
byte offsets are used in handling faults:

14
18
20
22
24

Real_Sem
Fault_TIS
Faul t_EREC
Fault_Words
Fault_Type

semaphore to start the faulthandler
TIS of faulting task
E_REC of segment to read
number of words needed on stack
80H=segment fault, 81H=stack fault

A stack fault sets Fault EREC to the current
~machine EREC. A segment fault sets
Fault Words to zero. All other parameters are set
up as-described above.

The following ~codes may issue a segment fault:

CAP, CSP, CXL, SCXGn, CXG, CXI, CFP,
RPU, SIGNAL (if a task switch occurs), WAIT
(if a task switch occurs)

The following ~codes may issue a stack fault:

LDC, LDM, ADJ, SRS, CLP, CGP, SCIPn, CIP,
CXL, SCXGn, CXG, CXI, CFP

3-30 0400101:03A

The P-Machine

EXECUTION ERRORS

An execution error is a special error condition that
may be recognized during execution of a p-code.
When an execution error is detected, the PME calls
the operating system routine Exec_Error to report
the error. On the call, no stack checking should
be done in order to prevent a stack fault.

Under normal circumstances, Exec Error won't
return and continue p-code execution where the
execution error was detected. Instead, the system
will be reinitialized. However, it is possible for
you to specify that execution should continue.
Thus it is highly desirable that each p-code that
can cause an execution error leave the p-machine
in a consistent state on detection of the error.
Usually it is best to leave IPC pointing to the next
p-code, putting "dummy" results on the stack; that
way the p-code won't be reexecuted on return.

0400101:03A 3-31

The P-Machine

The call to Exec_Error is made by performing a
CXG 1,2 (an external call to KERNEL, procedure
2) with the stack as follows:

Stack:

I~ SP
MSCW

data

int

o

o
V77777777777 I~ SP

before after

TOS and TOS-1 are the usual elements placed on
the stack for a procedure call. TOS-2 is the
execution error number. TOS-3 and TOS-4 are
dummy parameters. (TOS indicates the element at
the top of the stack. TOS-1 indicates the second
element from the top, and so forth.)

3-32 0400101:03A

The P-Machine

Below is a list of the execution errors, along with
the execution error number, the p-codes that may
issue the error and a description of what the error
means.

Value Range Error

Number:

P-Codes:

Description:

1

CHK, CSTR

A value range error is issued if an array index or
scalar is out of bounds. This is detected only with
one of the special check instructions.

0400101:03A 3-33

The P-Machine

No Proc in Beg Table

Number:

P-Codes:

Description:

2

CLP, CGP, SCIPn, CIP, CXL,
SCXGn, CXG, CXI, CFP

A no-proc-in-seg-table error is issued whenever a
call is made to a procedure whose procedure
dictionary entry is zero. This condition indicates
that the procedure hasn't been linked into the host
program.

Integer Overflow

Number:

P-Codes:

Description:

5

<long integer routines>

An integer overflow error is issued on a conversion
from long integer to integer, where the resulting
integer is too large to fit into 16-bits. It will also
be generated if a long integer on the stack is too
large to be stored.

3-34 0400101:03A

The P-Machine

Divide by Zero

Number:

P-Codes:

Description:

6

DVI, MODI, DVR, <long integer
routines>

A divide-by-zero error is issued whenever division
or the remainder function is attempted with a zero
denominator.

Program Interrupted by User

Number:

P-Codes:

Description:

8

<none>

A program-interrupted-by-user error is issued
whenever the BIOS informs the PME that the break
key has been pressed and break hasn't been
disabled.

0400101:03A 3-35

The P-Machine

I/O Error

Number:

P-Codes:

Description:

10

<IOCHECK>

An I/O error is issued on the IOCHECK standard
procedure when IORESULT is nonzero.

Unimplemented Instruction

Number:

P-Codes:

Description:

11

<any unimplemented p-code>

An unimplemented-instruction error is issued if an
attempt is made to execute an illegal or reserved
p-code.

3-36 0400101:03A

The P-Machine

Floating Point Error

Number:

P-Codes:

Description:

12

LDCRL, LDRL, STRL, FLT, TNC,
RND, ABR, NGR, ADR, SBR, MPR,
DVR, EQREAL, LEREAL, GEREAL,
<POWEROFTEN>

A floating point error is issued if the result of a
floating point calculation isn't a legal floating point
number. This may happen on floating point
overflow. This error is also issued if a floating
point p-code is executed with a PME that doesn't
support floating point.

0400101:03A 3-37

The P-Machine

String Overflow

Number:

P-Codes:

Description:

13

esp, ASTR, <long integer routines>

A string overflow error is issued on string
assignment to a string that is too small to hold the
source string.

Break Point

Number: 16

P-Codes: BPT

Description:

A break point error is issued when a break point
p-code is executed. This error will result in
entering the Debugger if the Debugger is currently
running.

3-38 0400101:03A

The P-Machine

Set Too Large

Number: 18

P-Codes: SRS

Description:

A set-too-Iarge error is issued if an attempt is
made to create a set that is larger than the
largest allowed set size.

Segment Too Large

Number:

P-Codes:

Description:

19

<READSEG>

A segment-too-Iarge error is issued if an attempt is
made to read, with the standard procedure
READSEG, a segment that is too large. This
execution error is generated only by J;rmachines
that have an unusual restriction on segment size.

0400101:03A 3-39

The P-Machine

P-CODE INSTRUCTIONS

Instructions for the p-machine consist of an opcode,
which is one or two bytes long, followed by zero
to three parameters. There are 217 p-code
instructions (255 minus 38 currently unused
instructions). P-machine instructions are described
at the end of this section. They are also listed
alphabetically in Appendix A and numerically in
Appendix B.

Here is a description of a typical p-code
instruction. (The format of the description is the
same for all p-codes.)

3-40 0400101:03A

LDCB Load Constant Byte

The P-Machine

Opcode:

Operation:

Stack:

128

LDCB

80

UB

V77777777777 I~ SP
before

Description:

~ UB !HP
7777777/777

after

The constant UB with high byte zero is pushed
onto the stack. LDCB is used to load a constant
in the range 0 through 255.

The top line shows the mnemonic of the p-code
(LCDB) and its name (Load Constant Byte); the
second line shows its value, both decimal (128) and
hexadecimal (80).

The third line defines the operation of the
instruction. The mnemonic is followed by the
instruction's parameter-more specifically, the
format of the instruction's parameter. Here the
format is UB, meaning unsigned byte. UB and the
four other paramter formats are discussed below.

NOTE: Most p-machine instructions don't have
specific parameters but instead deal with operands
that are on the stack.

0400101:04A 3-41

The P-Machine

The stack part of the description shows the
contents of the stack before and after execution of
the instruction. SP means stack pointer; it points
to the top of the stack (TOS).

Instruction Parameters

The parameters to a p-code instruction contain
information about the size and number of the
instruction's operands. (In some cases, the
parameter may be an operand itself, as in the
case of LDCB, shown above.)

The five parameter formats ore:

1. UB - Unsigned Byte

Represents a positive integer in the range 0
through 255. When convereted to a 16-bit
value, the most significant byte is zeroed.

2. SB - Signed Byte

Represents a two's complement 8-bit integer in
the range -128 through 127. When converted
to a 16-bit two's complement value, the most
significant byte is a sign extension (all bits
equal bit 7 of the low byte (SB».

3. DB - Don't Care Byte

Represents a positive integer in the range 0
through 127. Bit 7 is always O. When
converted to a 16-bit value, the most
significant byte is zeroed.

3-42 0400101:03A

The P-Machine

4. B - Big

This is a parameter with variable length. If
bit 7 of the first byte is 0, the remaining 7
bits represent a positive integer in the range
o through 127. If bit 7 of the first byte is 1,
then bit 7 is cleared; the first byte is the
high-order byte of a 16-bit word, and the
following byte is the low-order byte of that
word. The big format may represent pcsitive
integers in the range 0 through 32767.

5. W - Word

This is a 2-byte paramter. It is a 16-bit
two's complement value that represents an
integer in the range -32768 through 32767.
The word is always represented as
least-significant-byte in the code stream.

Dynamic Operands

This section describes the stack-oriented dynamic
operands of p-machine instructions.

Activation Record

An activation record is created
invocation of an active routine.
illustrates an activation record.

0400101:03A

for each
Figure 3-2

3-43

The P-Machine

Addr (address

A 16-bit p-machine pointer. It may be a byte
address, in which case it is restricted to even
values. On word-addressed processors, a pointer
may be a word address.

Bool (boolean)

A 16-bit quantity treated as a logical value. If
bit 15 is 0, the value is FALSE. If bit 15 is 1,
the value is TRUE.

Byte-ptr (byte pointer)

A 32-bit quantity. TOS is an index into an array
of bytes. TOS-l is the word address of the base
of the byte array. Two words are used in a
byte-ptr so that individual bytes may be specified
on word-addressed processors.

Int (integer)

A 16-bit two's complement integer.

Nil

an invalid address.
varies from

(See the p-code
a table of NIL values

A constant that references
The actual value
processor-to-processor.
description of LDCN for
for various processors.)

3-44 0400101:03A

The P-Machine

Offset

An offset into a code segment. This is either a
word or a byte offset, depending on the natural
addressing unit of the host processor.

Pack-ptr (packed array pointer)

Three words that designate a bit field within a
16-bit word. TOS is the number of the rightmost
bit of the field, TOS-l is the number of bits in
the field, and TOS-2 is the address of the word.

Real

A 32-bit or 64-bit floating point quantity.

Set

A set is 0 through 255 words of bit flags,
preceded by a word that contains the number of
words in the set.

Word

A 16-bit quantity that may be treated in any
way-as an integer, boolean, address, and so
forth.

0400101:03A 3-45

The P-Machine

Word-block

A group of Zero or more words.

3-46 0400101:03A

The P-Machine

Activation Records

An activation record 'is created
invocation of an active routine.
illustrates an activation record.

high address

for each
Figure 3-2

Mark
Stack

function value

parameters

locals
and

temporaries

MSPROC

MSENV

MSIPC

MSDYN

MSSTAT

DATASIZE
words

least significant
byte

low address

Figure 3-2. Procedure Activation Record

0400101:03A 3-47

The P-Machine

The parts of an activation record are:

1. Mark stack. This area contains five (full) words
of housekeeping information:

a. MSSTAT - pointer to the activation record of
the lexical parent.

b. MSDYN - point to the activation record of
the caller.

c. MSIPC - segment relative byte pointer to
point of call in the caller.

d. MSENV - E_Rec pointer of the caller.

e. MSPROC - procedure number of caller.

2. Local and temporary variables.
Data_Size words long.

This area is

3. Parameters.
contains:

This area (which may be empty)

a. Addresses - for VAR parameters, and record
and array value parameters.

b. Values - for other value parameters.

4. Function value. This area is present only for
functions, and is either one or two words (or
four words, if reals are that size).

3-48 0400101:04A

p-code
Descriptions

"S
a.
It

C
It
~..••
~••;------------------- 0
:::s
III

The P-Machine

P-CODE DESCRIPTIONS

ABI Absolute Value Integer

Opcode: 224 EO

Operation: ABI

Stack:

~ . t I(-SP

77777777777
before

Description:

~ int I~ SP
/7777/77777

after

TOS is replaced by the absolute value of TOS. If
TOS was initially -32768 the result should be
-32768.

0400101:03A 3-49

The P-Machine

ABR Absolute Value Real

Opcode: 227 E3

Operation: ABR

Stack:

I~ SP
real

~77777777777 ~
before

Description:

I~ SP
real

~77777777777 ~
after

TOS is replaced by the absolute value of TOS.

3-50 0400101:03A

ADI

Opcode:

Add Integers

162 A2

The P-Machine

Operation: ADI

stack:

int

int

before

Description:

~ SP

~ . t I~ SP

7///7//////
after

TOS is replaced by TOS-l + TOS. The result
should be computed as if it were an unsigned
operation on 32-bit operands, and only the lowest
16 bits were retained for the result. Thus,
overflow or underflow will "wrap around" to the
opposite sign.

0400101:03A 3-51

The P-Machine

ADJ

Opcode:

Operation:

Stack:

Adjust Set

199

ADJ

C7

VB

I~ SP
set word-blk

I~ SP

~77777777777 ~
before

Description:

~77777777777 ~
after

If less than 20 words on the stack will be available
after the completion of the adjust, a stack fault is
issued.

The set TOS is stripped of its length word and
then expanded or compressed so that it is VB
words in size. Expansion is done by adding words
of zeros "between" TOS and TOS-I. Compression is
done by removing high words of the set. It is
legal for adjust to remove "significant" words of
the set during compression.

3-52 0400101:03A

The P-Machine

real

~7//7//////7 ~
before

Description:

I~ SP
real

h//7////7// ~
after

TOS is replaced by the value TOS-l + TOS. The
result should be zero on underflow. A floating
point execution error is issued on overflow.

0400101:03A 3-53

The P-Machine

ASTR

Opcode:

Operation:

Stack:

addrlofs

addr

Assign String

235

ASTR

~ SP

EB

UBI, UB2

before

Descript ion:

V77777777777 I~ SP
after

TOS-I is the address of the destination string
variable. UB2 is the declared size of that string
(the number of characters it may hold). TOS is
either the address of a string variable (if UBI is
zero), or the offset of a string constant in the
constant pool of the current segment.

A string overflow execution error is issued if the
dynamic size of the source string is greater than
the declared size of the destination string.

Otherwise, the source string is copied to the
destination string.

3-54 0400101:03A

BNOT

Opcode:

Operation:

Boolean Not

159

BNOT

9F

The P-Machine

stack:

~ bool I~ SP

77777777777
before

Description:

~ bool I~ SP

77777777777
after

The one's complement of TOS is masked to one bit,
and the result is pushed on the stack. BNOT
produces a 1 (TRUE) or a 0 (FALSE) on the stack,
regardless of how many bits were set in TOS.

0400101:03A 3-55

The P-Machine

BPT

Opcode:

Break point

158 9E

Operation: BPT

Stack:

MSCW
I~ SP

v77777777777 I~ SP
before

Description:

data

~777777777771
after

A break point execution error is issued
unconditionally.

3-56 0400101:03A

CAP

The P-Machine

Copy Array Parameter

Opcode:

Operation:

Stack:

addr

addr

before

Description:

171

CAP

~ SP

AB

B

v77777777777 I~ SP
after

TOS is the address of a parameter descriptor for a
packed array of characters. The parameter
description is a two word record. The first (low)
word is either NIL, or a pointer to an E Rec. If
the first word is NIL, the second word is the
address of the paramter. If the first word points
to an E Rec, the second word is an offset relative
to the segment indicated by the E Rec. This
offset was created with an LCO instruction.

A segment fault is issued if the parameter
descriptor indicates a nonresident segment.
Otherwise, the array (which is B words big), is
copied to the destination at address TOS-1.

0400101:03A 3-57

The P-Machine

CFP Call Formal Procedure

Opcode: 151 97

Operation: CFP VB

Stack:

~ SP I~ SPproc-num MSCW

erec-p
data

stat-Ink

~77777777777 ~
before after

Description:

TOS contains a procedure number. TOS-1 contains
an E_Rec pointer, TOS-2 contains a static link.
The procedure TOS in the segment indicated by
TOS-1 is called.

If the segment indicated by TOS-1 isn't in memory,
a segment fault is issued.

If the Data_Size word for procedure VB is
negative, nothing is allocated on the stack and a
native code call is made. P-code execution
resumes with the following p-code.

3-58 0400101:03A

The P-Machine

Otherwise, Data Size words and an MSCW are
allocated on the -stack. The Static Link field of
the MSCW is set to TOS-2. MP is set to point to
the new MSCW, CURPROC is set to TOS, and IPC
is set to the first p-code of procedure UB2.
E Rec and E Vect are set to reflect the new
environment.

If there aren't 40 words left on the stack after the
MSCW and data are allocated, a stack fault is
issued.

0400101:03A 3-59

The P-Machine

CGP Call Global Procedure

Opcode:

Operation:

Stack:

145

CGP

91

VB

MSCW
I~ SP

v77777777777 I~ SP
before

Description:

data

~77777777777 ~
after

Global procedure VB in the currently executing
segment is called.

If the Data Size word for procedure VB is
negative, nothing is allocated on the stack and a
native code call is made. P-code execution
resumes with the following p-code.

Otherwise, Data_Size words and an MSCW are
allocated on the stack. The Static Link field of
the MSCW is set to the old value of BASE (the
global data MSCW). MP is set to point to the new
MSCW, CVRPROC is set to VB, and IPC is set to
the first p-code of procedure VB.

3-60 0400101:03A

The P-Machine

If there aren't 40 words left on the stack after the
MSCW and data are allocated, a stack fault is
issued.

0400101:03A 3-61

The P-Machine

CHK Check Subrange Bounds

Opcode: 203 CB

Operation: CHK

Stack:

int

int

int

before

Description:

~ SP

TOS is an upper-bound.
If it isn't the case that
value range execution
remains on the stack.

3-62

TOS-l is a lower-bound.
TOS-l <= TOS-2 <= TOS, a
error is issued. TOS-2

0400101:03A

CIP

The P-Machine

Call Intermediate Procedure

Opcode:

Operation:

Stack:

146

CIP

92

DB, UB

MSCW
I~ SP

V77777777777 I~ SP
before

Description:

data

~77777777777 ~
after

Intermediate procedure UB in the currently
executing segment is called.

If the Data_Size word for procedure UB is
negative, nothing is allocated on the stack and a
native code call is made. P-code execution
resumes with the following p-code.

Otherwise, Data Size words and an MSCW are
allocated on the -stack. The Static Link field of
the MSCW is set to the intermediate -MSCW that is
DB lexical levels above the current MSCW. MP is
set to point to the new MSCW, CURPROC is set to
UB, and IPC is set to the first p-code of procedure
UB.

0400101:03A 3-63

The P-Machine

If there aren't 40 words left on the stack after the
MSCW and data are allocated, a stack fault is
issued.

3-64 0400101:03A

eLP

The P-Machine

Call Local Procedure

Opcode:

Operation:

Stack:

144

CLP

90

VB

MSCW
I~ SP..

v77777777777 I~ SP
before

Description:

data

~77777777777 ~
after

Local procedure VB in the currently executing
segment is called.

If the Data Size word for procedure V B is
negative, nothing is allocated on the stack and a
native code call is made. P-code execution
resumes with the following p-code.

Otherwise, Data Size words and an MSCW are
allocated on the -stack. The Static Link field of
the MSCW is set to the old value of MP. MP is
set to point to the new MSCW, CVRPROC is set to
VB, and IPC is set to the first p-code of procedure
VB.

0400101:03A 3-65

The P-Machine

If there aren't 40 words left on the stack after the
MSCW and data are allocated, a stack fault is
issued.

3-66 0400101:03A

CSP

The P-Machine

Copy String Parameter

Opcode:

Operation:

Stack:

addr

addr

before

Description:

172

CSP

~ SP

AC

DB

Vlllllllllll I~ SP
after

TOS is the address of a parameter descriptor for a
packed array of characters. The parameter
description is a two word record. The first (low)
word is either NIL, or a pointer to an E_Rec. If
the first word is NIL, the second word is the
address of the paramter. If the first word points
to an E Rec, the second word is an offset relative
to the segment indicated by the E_Rec. This
offset was created with an LCO instruction.

0400101:03A 3-67

The P-Machine

A segment fault is issued if the parameter
descriptor indicates a nonresident segment.
Otherwise, the dynamic length of the designated
string is compared to DB (the declared size of the
destination formal parameter). If the string is
larger than the destination size, a string overflow
execution error is issued. Otherwise, the string is
copied to the address TOS-I.

3-68 0400101:03A

CSTR Check String Index

The P-Machine

Opcode:

Operation:

Stack:

int

addr

before

Description:

236

CSTR

~ SP

EC

int

addr

after

~ SP

TOS-l is the address of a string variable. TOS is
an index into that variable.

If the index is less than 1 or greater than the
dynamic length of the string variable, a value range
execution error is issued.

0400101:03A 3-69

The P-Machine

CXG Call External Global

Opcode:

Operation:

Stack:

148

CXG

94

UB1, UB2

MSCW
I~ SP..

v77777777777 I~ SP
before

Description:

data

~77777777777 ~
after

The global procedure UB2 in segment VB1 is called.

If segment UB1 isn't in memory, a segment fault is
issued.

If the VB1 is 1 and the procedure number matches
one of the standard procedure numbers, the p-code
performs the standard procedure instead of the call.
See the section describing the standard procedures,
at the end of this chapter.

3-70 0400101:03A

The P-Machine

If the Data Size word for procedure UB is
negative, nothing is allocated on the stack and a
native code call is made. P-code execution
resumes with the following p-code.

Otherwise, Data Size words and an MSCW are
allocated on the stack. The Static Link field of
the MSCW is set to the new BASE (the global data
MSCW). MP is set to point to the new MSCW,
CURPROC is set to UB, and IPC is set to the
first p-code of procedure UB2. E Rec and E Vect
are set to reflect the new environment.

If there aren't 40 words left on the stack after the
MSCW and data are allocated, a stack fault is
issued.

0400101:03A 3-71

The P-Machine

eXI Call External Intermediate

Opcode:

Operation:

Stack:

149

CXI

95

UBI, DB, UB2

I~ SP
MSCW

V77777777777 I~ SP
before

Description:

data

~77777777777 ~
after

The global procedure UB2 in segment UBI is called.

If segment UBI isn't in memory, a segment fault is
issued.

If the Data Size word for procedure UB is
negative, nothing is allocated on the stack and a
native code call is made. P-code execution
resumes with the following p-code.

3-72 0400101:03A

The P-Machine

Otherwise, Data Size words and an MSCW are
allocated on the -stack. The Static Link field of
the MSCW is set to the MSCW, that 1s, DB lexical
levels above the current MSCW. MP is set to point
to the new MSCW, CURPROC is set to UB, and
IPC is set to the first p-code of procedure UB2.
E Rec and E Vect are set to reflect the new
environment.

If there aren't 40 words left on the stack after the
MSCW and data are allocated, a stack fault is
issued.

0400101:03A 3-73

The P-Machine

CXL Call External Local

Opeode:

Operation:

Staek:

147

CXL

93

UBl, UB2

I~ SP
MSCW

v77777777777 I~ SP
before

Deseription:

data

~77777777777 ~
after

The local procedure UB2 in segment UBl is called.

If segment UBl isn't in memory, a segment fault is
issued.

If the Data Size word for procedure UB is
negative, nothing is allocated on the stack and a
native code call is made. P-code execution
resumes with the following p-code.

Otherwise, Data_Size words and an MSCW are
allocated on the stack. The static Link field of
the MSCW is set to the old value of MP. MP is
set to point to the new MSCW, CURPROC is set to
UB, and IPC is set to the first p-code of procedure
UB2. E Rec and E Vect are set to reflect the
new environment.

3-74 0400l0l:03A

The P-Machine

If there aren't 40 words left on the stack after the
MSCW and data are allocated, a stack fault is
issued.

0400101:03A 3-75

The P-Machine

DECI Decrement Integer

Opcode: 238 EE

Operation: DECI

Stack:

~ iot I+- SP

77777777777
before

Description:

~ . t I+-SP
777/7777777

after

TOS is decremented by 1. If TOS was initially
-32768, the result should be 32767.

3-76 0400101:03A

DIP Set Difference

The P-Machine

Opcode: 221 DD

Operation: DIF

Stack:

I~ SP
set

set set
I~ SP

~77777777777 ~
before

Description:

~77777777777 ~
after

The difference of sets TOS-1 and TOS is pushed
onto the stack. The difference is computed as
bit-wise (T08-1 AND NOT TOS).

0400101:03A 3-77

The P-Machine

DUPI Duplicate One Word

Opeode:

Operation:

Stack:

226

DUPl

E2

~ word IHP
777777/7777

before

Description:

word

word

after

+- SP

The word TOS is duplicated on top of the stack.

3-78 0400101:03A

DUPR Duplicate Real

The P-Machine

Opcode:

Operation:

Stack:

198

DUPR

C6

real
I~ SP

~77777777777 ~
before

real

Description:

I~ SP
real

~777777777771
after

The real TOS is duplicated on top of the stack. If
the p-machine supports 2-word reals, two words are
duplicated. If the p-machine supports 4-word reals,
four words are duplicated. If the p-machine
doesn't support reals, a floating point execution
error is issued.

0400101:03A 3-79

The P-Machine

DVI Divide Integer

Opcode: 141 8D

Operation: DYI

Stack:

int

int

before

Description:

~ SP

~ int I~ SP

77777777777
after

If TOS is zero, a divide-by-zero execution error
occurs.

Otherwise, TOS is replaced by TOS-1 DIY TOS.
The division operation is an integer division
truncated toward zero.

3-80 0400101:03A

The P-Machine

real

~77777777777 ~
before

Description:

-,~ SP
real

~77777777777 ~
after

If TOS is zero, a divide-by-zero execution error is
issued.

Otherwise, TOS is replaced by the value
TOS-1 / TOS. The result should be zero on
underflow. A floating point execution error is
issued on overflow.

0400101:03A 3-81

The P-Machine

HFJ Equal False Jump

Opeode:

Operation:

Staek:

int

int

before

Deseription:

210

EFJ

~ SP

D2

SB

V77777777777 I~ SP
after

If TOS <> TOS-l, a jump is made, relative to the
next instruction, by the byte offset SB.

3-82 0400101:03A

EQBYT Equal Byte Array

The P-Machine

Opcode:

Operation:

Stack:

addrlofs

185

UBI, UB2, B

I~ SP

B9

addrlofs

~77777777777 ~
before

Description:

~ bo01 I+- SP
77777777777

after

UBI and UB2 are mode flags. They refer to TOS
and TOS-l, respectively. TOS and TOS-l each
point to a byte array (if the corresponding UB is
zero) or to the offset of the byte array in the
current segment. B is the size (in bytes) of the
arrays.

The boolean result of the comparison TOS-l = TOS
is pushed onto the stack. The bytes are compared
one by one in the natural byte order of the
processor until a mismatch is found or the end of
the arrays is reached. If there is a mismatch in
any character position, FALSE is pushed onto the
stack. Otherwise, TRUE is pushed.

0400101:03A 3-83

The P-Machine

EQPWR Equal Set

Opcode: 182 86

Operation: EQPWR

Stack:

I~ SP
set ..

set

~77777777777l
before

Description:

~ bo 1 I~ SF
77777;77777

after

The boolean result of the comparison TOS-1 = TOS
is pushed onto the stack. The sets need not be
the same size-only the elements must match.

3-84 0400101: 03A

real

~77777777777 ~
before

Description:

The P-Machine

~ bool I+- SF

77777777777
after

The boolean result of the comparison TOS-l = TOS
is pushed onto the stack.

0400101:03A 3-85

The P-Machine

EQSTR

Opcode:

Operation:

Stack:

Equal String

232

EQSTR

E8

UBI, UB2

addrlofs

addrlofs

before

Description:

~ SP

~ Ix> I I~ SP
77171;77171

after

UBI and UB2 are mode flags. They refer to TOS
and TOS-I, respectively. TOS and TOS-I each
point to a string (if the corresponding UB is zero)
or to the offset of the string in the current
segment.

The boolean result of the comparison TOS-I = TOS
is pushed onto the stack. The bytes are compared
one by one in the natural byte order of the
processor until a mismatch is found or the end of
the shorter string is reached. The comparison
begins at the second element of the strings. If
there is a mismatch in any character position,
FALSE is pushed on the stack. Otherwise, the
lengths of the strings are compared, and the
boolean result of the comparison length(TOS-l) =
length(TOS) is pushed.

3-86 0400101:03A

EQUI

Opeode:

Equal Integer

176 BO

The P-Machine

Operation: EQUI

8taek:

int

int

before

Deseription:

~ SP

~ bo 1 IHP
77777;77777

after

The boolean result of the comparison TOS-1 = TOS
is pushed onto the stack.

0400101:03A 3-87

The P-Machine

FJP

Opcode:

Operation:

Stack:

False Jump

212

FJP

D4

SB

~ Ix> I I~ SP
77777;77777

before

Description:

V77777777777 I~ SP
after

If TOS is FALSE, a jump is made, relative to the
next instruction, by the byte offset SB.

3-88 0400101:03A

PJPL False Jump Long

The P-Machine

Opcode:

Operation:

Stack:

213

FJPL

D5

w

~ bo I IHP
1/1/7;1/1/7

before

Description:

Vl/I/I/I/1/7 I~ SP
after

If TOS is FALSE, a jump is made, relative to the
next instruction, by the byte offset W.

0400101:03A 3-89

The P-Machine

FLT

Opeode:

Float

204 cc

Operation: FLT

Staek:

Deseription:

I~ SP
real

~77777777777 ~
after

Integer TOS is converted to a floating point
number, and the result is pushed onto the stack.

3-90 0400101:03A

GEBYT

The P-Machine

Greater Than or Equal Byte Array

Opcode:

Operation:

Stack:

addrlofs

187

GEBYT

I~ SP..

BB

UBI, UB2, B

addrlofs

~77777777777 ~
before

Description:

~ boo! I~ SP
777777777/7

after

UBI and UB2 are mode flags. They refer to TOS
and T08-1 , respectively. TOS and TOS-l each
point to a byte array (if the corresponding UB is
zero) or to the offset of the byte array in the
current segment. B is the size (in bytes) of the
arrays.

The boolean result of the comparison T08-1 >= TOS
is pushed on the stack. The bytes are compared
one by one in the natural byte order of the
processor until a mismatch is found or the end of
the arrays is reached. If there is a mismatch and
the character in T08-1 < the character in TOS,
FALSE is pushed onto the stack. Otherwise, TRUE
is pushed.

0400101:03A 3-91

The P-Machine

set

~77777777777 ~
before

Description:

~ bo 1 I~ SP
77777;77777

after

TRUE is pushed if TOS-l is a superset of TOS.
Otherwise, FALSE is pushed.

3-92 0400101:03A

GEQI

The P-Machine

Greater Than or Equal Integer

Opcode:

Operation:

Stack:

int

int

before

Description:

179

GEQI

~ SP

B3

~ bo 1 !HP
77777;77777

after

The boolean result of the signed comparison
TOS-1 >= TOS is pushed onto the stack.

0400101:03A 3-93

The P-Machine

real

~77777777777 ~
before

Deseript ion:

~ bo 1 IHP
77777;77777

after

The boolean result of the comparison T08-1 >= TOS
is pushed onto the stack.

3-94 0400101:03A

GESTR

The P-Machine

Greater Than or Equal String

Opcode:

Operation:

stack:

addrlofs

addrlofs

before

Description:

234

GESTR

~ SP

EA

UBI, UB2

~ boo! I~ SF
77777777777

after

UBI and UB2 are mode flags. They refer to TOS
and T08-l, respectively. TOS and TOS-l each
point to a string (if the corresponding UB is zero)
or to the offset of the string in the current
segment.

The boolean result of the comparison T08-l >= TOS
is pushed on the stack. The bytes are compared
one by one in the natural byte order of the
processor until a mismatch is found or the end of
the shorter string is reached. The comparison
begins at the second element of the strings. If
there is a mismatch in any character position and
the character in T08-l < the character in TOS,
FALSE is pushed on the stack. Otherwise, the
lengths of the strings are compared, and the
boolean result of the comparison length(T08-l) >=
length(TOS) is pushed.

0400l0l:03A 3-95

The P-Machine

GEUSW Greater Than or Equal Unsigned

Opcode:

Operation:

stack:

word

word

before

Description:

181

GEUSW

~ SP

B5

~ bool I~ SP
777777/7777

after

The boolean result of the unsigned comparison
TOS-1 >= TOS is pushed onto the stack.

3-96 0400101:03A

INC

Opcode:

Operation:

stack:

Increment

231

INC

E7

B

The P-Machine

Description:

The word pointer TOS is indexed by B words, and
the resulting pointer is pushed.

0400101:03A 3-97

The P-Machine

INCI Increment Integer

Opeode: 237 ED

Operation: INCl

Staek:

~ in! I~ SP

77777777777
before

Deseription:

TOB is incremented by 1. If TOB was initially
32767, the result should be -3.2768.

3-98 0400101:03A

IND

Opcode:

Operation:

stack:

Index

230

IND

The P-Machine

E6

B

Description:

~ word [HP
77777777777

after

TOS is the address of a record. TOS is replaced
with word B of the record.

0400101:03A 3-99

The P-Machine

INN Set Membership

Opeode: 218 DA

Operation: INN

Stack:

f--__in_t__-1[~ SP
set

~77777777777 ~
before

Description:

~ bol I~SP
77777;77777

after

The boolean result of the check whether TOS is
contained in the set TOS-1 is pushed onto the
stack.

3-100 0400101:03A

INT Set Intersection

The P-Machine

Opcode: 220 DC

Operation: INT

Stack:

I~ SP
set

set set
I~ SP

~77/77/77/7/ ~
before

~7/777/7/7771
after

Description:

The intersection (bit-wise AND) of sets TOS and
TOS-1 is pushed onto the stack.

0400101:03A 3-101

The P-Machine

IXA Index Array

Opcode: 215 D7

Operation: IXA B

Stack:

word ~ SP

addr ~ dd I~ SP
777;77;7777

before after

Description:

TOS is an integer index. TOS-1 is the array base
pointer. B is the size (in words) of an array
element. The word pointer to the indexed element
is pushed.

Algorithm:

addr:= TOS-1 + TOS*B * x

(Where x=2 for byte-addressed PMEs, and x=1 for
word-addressed PMEs.)

3-102 0400101:03A

The P-Machine

IXP Index Packed Array

Opcode: 216 DB

Operation: IXP UBI, UB2

Stack:

word ~ SP
I~ SP

addr
pack-ptr

~77777777777 ~
before after

Description:

TOS is an integer index. T08-1 is the array base
pointer. UBI is the number of elements per word.
UB2 is the field width (in bits). A packed field
pointer to the indicated field is pushed.

Algorithm:

pack-ptr.right_bit:= (TOS mod UBI) * UB2
pack-ptr.field width:= UB2
pack-ptr.addr:; T08-1 + (TOS div UBl) * x

(Where x=2 for byte-addressed PMEs, and x=1 for
word-addressed PMEs.)

0400101:03A 3-103

The P-Machine

LAE Load Extended Address

Opcode:

Operation:

155

LAE

9B

UB, B

stack:

v1l711111111 I~ SP
before

Description:

~ add. I~ SP
71111711117

after

The address of the variable with offset B in the
global activation record of local segment UB is
pushed onto the stack.

3-104 0400101:03A

LAND

The P-Machine

Logical And

Opcode:

Operation:

Stack:

word

161

LAND

~ SP

A1

word

before

Description:

~ word !HP
77777777777

after

TOS and TOS-1 are ANDed bit-wise, and the result
is placed on the stack.

0400101:03A 3-105

The P-Machine

LAO Load Global Address

Opcode:

Operation:

134

LAO

86

B

Stack:

v77777777777 I~ SP
before

Description:

~ add. I~ SP
77777777777

after

The address of the variable with offset B in the
global activation record is pushed onto the stack.

3-106 0400101:03A

Leo

The P-Machine

Load Constant Offset

Opcode:

Operation:

130

Leo

82

B

Stack:

v77777777777 I~ SP
before

Description:

~ offset I~ SP

77777777777
after

B is a word offset into the constant pool of the
current segment. The address of the indicated
constant is converted into a segment relative
offset. This offset is a word offset on
word-addressed PMEs and a byte offset on
byte-addressed PMEs. The computed offset is
pushed onto the stack.

0400101:03A 3-107

The P-Machine

LDA Load Intermediate Address

Opcode:

Operation:

136

LDA

88

DB, B

Stack:

v77777777777 I~ SP
before

Description:

~ add. I~ SP

77777777777
after

DB indicates the number of static links to traverse
to find the activation record to use. (DB=O
indicates the local activation record; DB=1
indicates the parent activation record; and so
forth.) The address of the variable with offset B
in the indicated activation record is pushed onto
the stack.

3-108 0400101:03A

LDB

Opcode:

Load Byte

167 A7

The P-Machine

Operation: LDB

Stack:

I I~ SP
: byte-ptr

~77777777777 ~
before

Description:

~ word !HP
77777777777

after

TOS is a byte pointer. TOS is replaced by the
indicated byte with the high byte zero.

0400101:03A 3-109

The P-Machine

LDC Load Constant

Opcode:

Operation:

Stack:

131

LDC

83

UB1, B, UB2

I~ SP
block

v77777777777 I~ SP
before

Description:

~77777777777 ~
after

If less than UB2+20 words are available on the
stack, a stack fault is issued.

B is a word offset into the constant pool of the
currently executing segment. UB2 words starting
at that offset are pushed onto the stack, preserving
the order of the words. If UB1, the mode, is 2,
and the current segment is of opposite byte sex
from the host processor, the bytes of each word
are swapped as they are loaded.

3-110 0400101:03A

LDCB Load Constant Byte

The P-Machine

Opcode:

Operation:

Stack:

128

LDCB

80

UB

V7/77/7/7/77 I~ SP
before

Description:

~ VB I~ SP
777777/7777

after

The constant UB with high byte zero is pushed
onto the stack. LDCB is used to load a constant
in the range 0 through 255.

0400101:03A 3-111

The P-Machine

LDCI Load Constant Integer

Opeode:

Operation:

Staek:

129

LDCI

81

w

V77777777777 I~ SP
before

Deseription:

~ W !HP
77777777777

after

The constant word W is pushed onto the stack.

3-112 0400101:03A

LDCN Load Constant NIL

The P-Machine

Opcode:

Operation:

Stack:

152

LDCN

98

V77777777777 I~ SP
before

Description:

~ NIL I+- SP
77777777777

after

The processor-dependent value NIL is pushed onto
the stack. See the table below for the value of
NIL for each processor.

NIL

Z80
8080
6502
6809
68000
HP-87
PDP-11
9900
8086

0400101:03A

0001
0001
0000
0000
0000
0000
FOOl
0000
0000

3-113

The P-Machine

LDCRL Load Constant Real

Opcode:

Operation:

Stack:

242

LDCRL

F2

B

real
I~ SP..

v/7777777777 I~ SP
before

Description:

~7777/77/77/1
after

The real constant at offset B in the constant pool
of the currently executing segment is loaded onto
the stack.

3-114 0400101:03A

LDE Load Extended

The P-Machine

Opcode:

Operation:

Stack:

154

LDE

9A

DB, B

v7l7l7l77177 I~ SP
before

Description:

~ word I+- SP
71777777777

after

The word at offset B in the global activation
record of local segment DB is pushed onto the
stack.

0400101:03A 3-115

The P-Machine

LDL

Opcode:

Operation:

Load Local

135

LDL

87

B

Stack:

V77777777777 I~ SP
before

Description:

~ word I+-SP
77777777777

after

The word with word offset B in the local
activation record is pushed onto the stack.

3-116 0400101:03A

LDM Load Multiple

The P-Machine

Opcode:

Operation:

stack:

208

LDM

DO

UB

~ ddr I~ SP
777;7777777

before

Description:

I~ SP
block

~77777777777l
after

If less than UB+20 words are available on the
stack, a stack fault is issued.

TOS is a pointer to a block of UB words. The
block is pushed onto the stack, preserving the order
of the words.

0400101:03A 3-117

The P-Machine

LDO

Opcode:

Operation:

Stack:

Load Global

133

LDO

85

B

V77777777777 I~ SP
before

Description:

The word with offset B in the global activation
record is pushed onto the stack.

3-118 0400101:03A

LDP

Opcode:

Load Packed

201 C9

The P-Machine

Operation: LDP

Stack:

I I~ SP
: pack-ptr :

~7777777777/l
before

Description:

~ d !HP
///;;;/////

after

The packed field pointer TOS is replaced with the
field it designates. Before being pushed onto the
stack, the field is right-justified and zero-filled.

0400101:03A 3-119

The P-Machine

LDRL

Opeode:

Operation:

Stack:

Load Real

243

LDRL

F3

~ addr I~ SP

77777777777
before

Description:

I~ SP
real

~77777777777 ~
after

TOS is the address of a real variable.
replaced with the indicated real.

TOS is

3-120 0400101:03A

LEBYT

The P-Machine

Less Than or Equal Byte Array

Opcode:

Operation:

Stack:

addrlofs

186

LEBYT

I~ SP

BA

UBI, UB2, B

addrlofs

~77777777777 ~
before

Description:

~ boo1 I~ SP

77777777777
after

UBI and UB2 are mode flags. They refer to TOS
and TOS-l, respectively. TOS and TOS-l each
point to a byte array (if the corresponding UB is
zero) or to the offset of the byte array in the
current segment. B is the size (in bytes) of the
arrays.

The boolean result of the comparison T08-l <= TOS
is pushed on the stack. The bytes are compared
one by one in the natural byte order of the
processor until a mismatch is found or the end of
the arrays is reached. If there is a mismatch and
the character in T08-l > the character in TOS,
FALSE is pushed onto the stack. Otherwise, TRUE
is pushed.

0400101:03A 3-121

The P-Machine

LBPWR Less Than or Equal Set

Opcode:

Operation:

stack:

183

LEPWR

B7

I~ SP
set

set

~77/77/7777/ ~
before

Description:

~ bool I~ SP
/77/77//777

after

TRUE is pushed if TOS-1 is a subset of TOS.
Otherwise, FALSE is pushed.

3-122 0400101:03A

LEQI

The P-Machine

Less Than or Equal Integer

Opcode: 178 B2

Operation: LEQI

Stack:

int

int

before

Description:

~ SP

~ boo! !HP
77777777777

after

The boolean result of the signed comparison
TOS-1 (= TOS is pushed onto the stack.

0400101:03A 3-123

The P-Machine

real

~77777777777 ~
before

Description:

~ bo I I+- SP
77777;77777

after

The boolean result of the comparison TOS-1 <= TOS
is pushed onto the stack.

3-124 0400101:03A

LESTR

The P-Machine

Less Than or Equal String

Opcode:

Operation:

stack:

addrlofs

addrlofs

before

Description:

233

LESTR

~ SP

E9

UBI, UB2

~ bo I I~ SF
77777;77777

after

UBI and UB2 are mode flags. They refer to TOS
and TOS-l, respectively. TOS and TOS-l each
point to a string (if the corresponding UB is zero)
or to the offset of the string in the current
segment.

The boolean result of the comparison TOS-l <= TOS
is pushed onto the stack. The bytes are compared
one by one in the natural byte order of the
processor until a mismatch is found or the end of
the shorter string is reached. The comparison
begins at the second element of the strings. If
there is a mismatch in any character position and
the character in TOS-l > the character in TOS,
FALSE is pushed onto the stack. Otherwise, the
lengths of the strings are compared, and the
boolean result of the comparison length(TOS-l) <=
length(TOS) is pushed.

0400l0l:03A 3-125

The P-Machine

LEUSW Unsigned Less Than or Equal

Opeode:

Operation:

Staek:

word

word

before

Deseription:

180

LEUSW

~ SP

B4

~ bol I~SP
77777;77777

after

The boolean result of the unsigned comparison
TOS-l <= TOS is pushed onto the stack.

3-126 0400101:03A

LLA Load Local Address

The P-Machine

Opcode:

Operation:

132

LLA

84

B

Stack:

V77777777777 loE- SP
before

Description:

~ addr I~ SP

777777777/7
after

The address of the variable with offset B in the
local activation record is pushed onto the stack.

0400101:03A 3-127

The P-Machine

LNOT

Opcode:

Operation:

Logical Not

229

LNOT

E5

Stack:

~ word I+-SP
77777777777

before

Description:

~ word I+-SP
77777777777

after

TOS is replaced by its one's complement.

3-128 0400101:03A

LOD Load Intermediate

The P-Machine

Opcode:

Operation:

137

LOD

89

DB, B

Stack:

v77777777777 I+- SP
before

Description:

~ word I~ SP
77777777777

after

DB indicates the number of static links to traverse
to find the activation record to use. (DB=O
indicates the local activation record; DB=1
indicates the parent activation record; and so
forth.) The word with offset B in the indicated
activation record is pushed onto the stack.

0400101:03A 3-129

The P-Machine

LOR

Opcode:

Logical Or

160 AO

Operation: LOR

Stack:

word

word

before

Description:

~ SP

~ word !HP
77777777777

after

TOS and TOS-1 are ORed bit-wise, and the result
is placed on the stack.

3-130 0400101:03A

LPR

The P-Machine

Load Processor Register

Opcode: 157 9D

Operation: LPR

Stack:

~ word !HP
77777777777

after

Description:

TOS is a register number. The value of the
register indicated in TOS is pushed onto the stack.
If TOS is negative, the following table indicates
which register is pushed:

-1 CURTASK
-2 EVEC
-3 READYQ

If TOS is positive, the current p-machine registers
are saved in the TIB, and TOS is the word index of
the register in the TIB to be pushed. If TOS is
less than -3 or greater than the size of a TlB, the
result of LPR is undefined.

0400101:03A 3-131

The P-Machine

LSL Load Static Link

Opeode:

Operation:

153

LSL

99

DB

Staek:

V77777777777 I~ SP
before

Deseription:

~ addr I~ SP

77777777777
after

DB indicates the number of static links to traverse.
A pointer to the MSCW that is DB links above the
current MSCW is pushed onto the stack.

3-132 0400101:03A

MODI

The P-Machine

Modulo Integers

Opcode:

Operation:

Stack:

int

int

before

Description:

143

MODI

~ SP

SF

~ . t IHP
7/7/77/7/77

after

If TOS is zero, a divide-by-zero execution error
occurs.

Otherwise, TOS is replaced by T08-1 MOD TOS,
where the MOD operation is as follows. The MOD
operation is undefined if TOS is negative, but the
PME shouldn't cause an execution error. The result
of MOD is always an integer between 0 and
(TOS) - 1. This result is calculated as if TOS
were added or subtracted from T08-1 until the
result is in the desired range. Note: the result of
the MOD operation isn't really the remainder of the
DIY operation if TOS-1 is negative.

0400101:03A 3-133

The P-Machine

MOV

Opcode:

Operation:

Stack:

addrlofs

addr

before

Description:

Move

197

MOY

~ SP

C5

UB, B

V77777777777 I~ SP
after

TOS is either the address of a word block (if
UB=O) or the offset of a constant word block in
the current segment (if UB<>O). B words are
moved from the source designated by TOS to the
destination address TOS-1. IF UB=2, and the
current segment has opposite byte sex from the
host processor, the bytes of each word are swapped
as the words are moved.

3-134 0400101:03A

The P-Machine

MPI Multiply Integer

Opcode: 140 8e

Operation: MPI

Stack:

int ~ SP

int ~ . t !HP
777/;777777

before after

Description:

TOS is replaced by TOS-l * TOS. The result
should be computed as if it were an unsigned
operation on 32-bit operands, and only the lowest
16 bits were retained for the result.

0400101:03A 3-135

~77777777777 ~
after

The P-Machine

real

~77777777777 ~
before

Deseription:

real
I~ SP..

TOS is replaced by the value TOS-1 * TOS. The
result must be zero on underflow. A floating point
execution error is issued on overflow.

3-136 0400101:03A

NAT Enter Native Code

The P-Machine

Opcode: 168 A8

Operation: NAT

Stack:

V77777777777 I~ SP
before

Description:

V77777777777 I~ SP
after

Control is transferred to the native code that
begins directly after the NAT instruction. It may
be necessary to increment IPC to a word boundary
on word-oriented processors.

0400101:03A 3-137

The P-Machine

NAT-INFO

Opcode:

Operation:

Stack:

Native Code Information

169 A9

NAT-INFO B

V77777777777 I~ SP
before

Description:

V77777777777 I~ SP
after

IPC is incremented to B bytes beyond the byte
starting just after B in the p-code stream. The
bytes after B contain information for the
native-code generators. This instruction acts like a
long form of NOP or a forward jump.

3-138 0400101:03A

NEQI Not Equal Integer

The P-Machine

Opcode: 177 B1

Operation: NEQI

Stack:

int

int

before

Description:

~ SP

~ bool I~ SF
7/7/777/77/

after

The boolean result of the comparison TOS-l <> TOS
is pushed onto the stack.

0400101:03A 3-139

The P-Machine

HPJ Not Equal False Jump

Opcode:

Operation:

Stack:

int

int

before

Description:

211

NFJ

~ SP

D3

SB

v77777777777 I~ SP
after

If TOS = TOS-1, a jump is made, relative to the
next instruction, by the byte offset SB.

3-140 0400101:03A

NOI Negate Integer

The P-Machine

Opeode: 225 E1

Operation: NGI

Staek:

~ . t IHP
7///7//////

before

Deseription:

~ 'nt I~ SP
777/7777777

after

TOS is replaced by the negative (two's complement)
of TOS. If TOS was initially -32768, the result
should be -32768.

0400101:03A 3-141

The P-Machine

NGR

Opeode:

Negate Real

228 E4

Operation: NGR

Stack:

I~ SP
real real

I~ SP

~77777777777 ~
before

Deseription:

~77777777777 ~
after

TOS is replaced by the inverse of TOS.

3-142 0400101:03A

HOP

Opcode:

No Operation

156 9C

The P-Machine

Operation: NOP

Stack:

v77777777777 I~ SP
before

Description:

v77777777777 I~ SP
after

No operation is performed. Execution continues.

0400101:03A 3-143

The P-Machine

RESERVEl••RESERVE6 Reserved

Opcode:

Operation:

stack:

250••255

RESERVEn

FA••FF

V77777777777 I~ SP
before

Description:

v77777777777 I~ SP
after

RESERVEn generates an unimplemented instruction
execution error.

These opcodes are reserved for internal use by the
compilers.

3-144 0400101:03A

RND

Opcode:

Round Real

191 BF

The P-Machine

Operation: RND

Stack:

I~ SP
real

~77777777777 ~
before

Description:

~ . t I~ SP

777/7777777
after

Real TOS is converted to an integer by rounding,
and the result is pushed on the stack. If the
result isn't in the range -32768 to 32767, a floating
point execution error is issued.

0400101:03A 3-145

The P-Machine

RPU Return from Procedure

Opcode:

Operation:

Stack:

150

RPU

96

B

data

I~ SP
MSCW

,....----~..
~-~

params

~1/71/1/1/1/ ~
before

Description:

v1/1/1/1/71/ I~ SP
after

Execution returns to the calling procedure.

The E_Rec pointer in the MSCW indicates the
segment to return to. If the segment isn't in
memory, a segment fault is issued.

3-146 0400101:03A

The P-Machine

Otherwise, MP is set to the Dynamic Link field of
the MSCW. If the Proc field of the MSCW is
positive, IPC is restored from the MSCW.
Otherwise, IPC is set to the Exit IC value found
just before the procedure code in the segment.
CURPROC is restored from the MSCW (negating the
value, if necessary). If the E Rec pointer of the
MSCW differs from EREC, EREC and EVEC are set
to reflect the new segment.

0400101:03A 3-147

The P-Machine

SBI Subtract Integer

Opeode: 163 A3

Operation: SBI

Staek:

int

int

before

Deseription:

~ SP

~ int I~ SP
77777777777

after

TOS is replaced by TOS-l - TOS. The result
should be computed as if it were an unsigned
operation on 32-bit operands, and only the lowest
16 bits were retained for the result. Thus,
overflow or underflow will "wrap around" to the
opposite sign.

3-148 0400101:03A

The P-Machine

real

~77777777777 ~
before

Description:

I~ SP
real

~77777777777 ~
after

TOS is replaced by the value TOS-1 - TOS. The
result should be zero on underflow. A floating
point execution error is issued on overflow.

0400101:03A 3-149

The P-Machine

SCIPl ••SCIP2 Short Call Intermediate Procedure

Opcode:

Operation:

Stack:

239••240

SCIPn

EF••FO

UB

MSCW
I~ SP..

V77777777777 I~ SP
before

Description:

data

~77777777777 ~
after

Intermediate procedure UB in the currently
executing segment is called.

If the Data Size word for procedure UB is
negative, nothing is allocated on the stack, and a
native code call is made. P-code execution
resumes with the following p-code.

Otherwise, Data Size words and an MSCW are
allocated on the -stack. The Static Link field of
the MSCW is set to the lexical parent (SCIP1) or
grandparent (SCIP2) of the current MSCW. MP is
set to point to the new MSCW, CURPROC is set to
UB, and IPC is set to the first p-code of procedure
UB.

3-150 0400101: 03A

The P-Machine

If there aren't 40 words left on the stack after the
MSCW and data are allocated, a stack fault is
issued.

040010l:03A 3-151

The P-Machine

SCXGl•.SCXG8 Short Call External Global

Opcode:

Operation:

Stack:

112••119

SCXGn

70••77

DB

I~ SP
MSCW

v77777777777 I~ SP
before

Description:

data

~77777777777 ~
after

The global procedure DB in segment n is called.

If segment DB isn't in memory, a segment fault is
issued.

If the instruction is SCXG1 and the procedure
number matches one of the standard procedure
numbers, the p-code performs one of these standard
procedures, instead of the call. See the section
describing the standard procedures.

3-152 0400101:03A

The P-Machine

If the Data Size word for procedure UB is
negative, nothIng is allocated on the stack, and a
native code call is made. P-code execution
resumes with the following p-code.

Otherwise, Data Size words and an MSCW are
allocated on the stack. The Static Link field of
the MSCW is set to the new BASE (the global data
MSCW). MP is set to point to the new MSCW,
CURPROC is set to UB, and IPC is set to the
first p-code of procedure UB. EREC and EVEC
are set to reflect the new environment.

If there aren't 40 words left on the stack after the
MSCW and data are allocated, a stack fault is
issued.

040010l:03A 3-153

The P-Machine

SIGNAL

Opcode:

Operation:

Stack:

Signal

222

SIGNAL

DE

~ add. I~ SP
77777777777

before

Description:

v77777777777 I~ SP
after

TOS is the address of a semaphore. If the
semaphore's wait queue is empty or the count is
negative, the count is incremented by one.
Otherwise, the TIB at the head of the semaphore's
wait queue is put on the ready queue, and its
Hang ptr is set to NIL. If the new task has a
higher priority than the current task, a task switch
occurs.

3-154 0400101:03A

The P-Machine

SINDO••SIND'l Short Index

Opcode:

Operation:

Stack:

120••127

SINDn

78••7 F

~ ddr IHP
777;7777777

before

Description:

TOS is the address of a record. TOS is replaced
with word n of the record. SINDn is used to index
into the first eight words of a record. The value
of n is <opcode>-120.

0400101:03A 3-155

The P-Machine

SLDCO••SLDC31 Short Load Constant

Opcode:

Operation:

Stack:

0••31

SLDCn

OO••IF

V77777777777 I~ SP
before

Description:

The constant word whose value is encoded in the
opcode is pushed onto the stack. The value n is
the value of the opcode itself. SLDCn is used to
load a constant between 0 and 31.

3-156 0400101:03A

The P-Machine

SLDLl••SLDL16 Short Load Local

Opcode:

Operation:

Stack:

32••47

SLDLn

20••2F

V77777777777 I~ SP
before

Description:

~ word !HP
77777777777

after

The word with word offset n in the local activation
record is pushed onto the stack. SLDLn is used to
load one of the first 16 local words. The value of
n is <opcode>-31.

0400101:03A 3-157

The P-Machine

SLDOl .•SLD016 Short Load Global

Opcode:

Operation:

Stack:

48••63

SLDOn

30••3F

v77777777777 I~ SP
before

Description:

The word with offset n in the global activation
record is pushed onto the stack. SLDOn is used to
load global words with offsets between 1 and 16.
The value of n is <opcode>-47.

3-158 0400101:03A

The P-Machine

SLLAl••SLLA8 Short Load Local Address

Opcode:

Operation:

96••103

SLLAn

60••67

stack:

V77777777777 I~ SP
before

Description:

~ addr I~ SP

77777777777
after

The address of the variable with offset n in the
local activation record is pushed onto the stack.
SLLAn is used to load the address of local
variables with offsets between 1 and 8. The value
of n is <opcode>-95.

0400101:03A 3-159

The P-Machine

SLODl ..SLOD2 Short Load Intermediate

Opcode:

Operation:

173••174

SLODn

AD••AE

B

Stack:

V77777777777 I~ SP
before

Description:

~ word I~ SP
77777777777

after

The word with offset B in the activation record of
the parent (SLOD1) or grandparent (SLOD2) of the
local activation record is pushed onto the stack.
The value of n is <opcode>-172.

3-160 0400101:03A

SPR

The P-Machine

Store Processor Register

Opcode: 209 D1

Operation: SPR

Stack:

word

int

before

Description:

~ SP

v77777777777 I~ SP
after

TOS-1 is a register number. If TOS-1 is negative,
TOS is stored in one of the following registers:

-1 CURTASK
-2 EVEC
-3 READYQ

Otherwise, the current p-machine registers are
stored in the TIB. TOS is stored in the TIB at
offset TOS-l. Finally, the p-machine registers are
restored from the TIB.

0400101:03A 3-161

The P-Machine

SRO

Opeode:

Operation:

Stack:

Store Global

165

SRO

A5

B

Description:

V77777777777 I~ SP
after

ros is stored in the word with offset B in the
global activation record.

3-162 0400101:03A

The P-Machine

SRS Subrange Set

Opcode: 188 Be

Operation: SRS

Stack:

int ~ SP
I~ SP

set .
int

.
~77777777777 ~

before after

Description:

If less than 20 words will be available on the stack
after this operation, a stack fault is issued.

The integers TOS and TOS-l must be in the range
[0 through 4097]. If not, a value range execution
error is issued.

If TOS-l > TOS, the empty set is pushed.
Otherwise, a set is created containing the elements
between TOS-l and TOS, inclusive, as members.
This set is pushed on the stack.

0400101:03A 3-163

The P-Machine

SSTLl..SSTL8 Short Store Local

Opeode:

Operation:

Stack:

104••111

SSTLn

68••6F

Description:

v77777777777 I~ SP
after

TOS is stored in the word with offset n in the
local activation record. SSTLn is used to store in
one of the first eight local words. The value of n
is <opcode>-103.

3-164 0400101:03A

STH

Opeode:

Store Byte

200 C8

The P-Machine

Operation: STB

Stack:

__w_o_r_d_----11~ SP

byte-ptr

~77777777777 ~
before

Description:

V77777777777 I~ SP
after

The low byte of TOS is stored in the location
pointed to by byte pointer TOS-I.

0400101:03A 3-165

The P-Machine

STH Store Extended

Opcode:

Operation:

Stack:

217

STE

D9

VB, B

v1/71/71/71/ I~ SP
before

Description:

~ word !HP
71/1/1/71/7

after

TOS is stored in the word with offset B in the
global activation record of local segment VB.

3-166 0400101:03A

STL

Opcode:

Operation:

stack:

Store Local

164

STL

A4

B

The P-Machine

~ word I~ SF

77777777777
before

Description:

V77777777777 I~ SP
after

TOS is stored in the word with offset B in the
local activation record.

0400101:03A 3-167

The P-Machine

STM Store Multiple

Opcode:

Operation:

Stack:

block

142

STM

I~ SP..

8E

UB

~
before

Description:

vIIII/IIIIII I~ SP
after

TOS is a block of UB words. The block is stored
at address TOS-1, preserving the order of the
words.

3-168 0400101:03A

STO

Opcode:

Store

196

The P-Machine

C4

Operation: STO

Stack:

word

addr

before

Description:

~ SP

V77777777777 I~ SP
after

TOS is stored in the word pointed to by TOS-1.

0400101:03A 3-169

The P-Machine

STP

Opcode:

Store Packed

202 CA

Operation: STP

Stack:

,.....-_w_or_d__1~ SP

pack-ptr

~/IIIIIIIIIII
before

Description:

vlllllllllll I~ SP
after

TOS contains right-justified data. TOS-1 is a
packed field pointer. TOS is masked to the field
width indicated in TOS-1, then stored into the field
described by TOS-l.

3-170 0400101:03A

STR Store Intermediate

The P-Machine

Opcode:

Operation:

Stack:

166

STR

A6

DB, B

~ word IHP
77/7/7/7/7/

before

Description:

V7/77/7/77/7 I~ SP
after

DB indicates the number of static links to traverse
to find the activation record to use. (DB=O
indicates the local activation record; DB=1
indicates the parent activation record; and so
forth.) TOS is stored into the word with offset B
in the indicated activation record.

0400101:03A 3-171

The P-Machine

STRL

Opcode:

Operation:

Stack:

Store Real

244

STRL

F4

real
I~ SP..

~
before

Description:

V77777777777 I~ SP
after

TOS is a real value. T08-1 is an address. TOS is
stored at the address TOS-l.

3-172 0400101:03A

SWAP

Opcode:

Operation:

Stack:

word

word

Swap

189

SWAP

~ SP

BD

word

word

The P-Machine

~ SP

before

Description:

after

Word TOS is swapped with word TOS-l on the
stack.

0400101:03A 3-173

The P-Machine

TJP

Opcode:

Operation:

Stack:

True Jump

241

TJP

F1

SB

~ bool I~ SP
77777777777

before

Description:

V77777777777 I~ SP
after

If TOS is TRUE, a jump is made, relative to the
next instruction, by the byte offset SB.

3-174 0400101:03A

TNe Truncate Real

The P-Machine

Opcode: 190 BE

Operation: TNC

Stack:

~77777777771 ~
before

real
I~ SP..

~ in! I~ SF
17777777777

after

Description:

Real TOS is converted to an integer by truncating,
and the result is pushed onto the stack. If the
result isn't in the range -32768 to 32767, a floating
point execution error is issued.

0400101:03A 3-175

The P-Machine

UJP Unconditional Jump

Opcode:

Operation:

Stack:

138

UJP

8A

SB

V77777777777 I~ SP
before

Description:

V77777777777 I~ SP
after

A jump is made, relative to the next instruction, by
the byte offset SB.

3-176 0400101:03A

UJPL

The P-Machine

Unconditional Jump Long

Opcode:

Operation:

Stack:

139

UJPL

8B

w

V77777777777 I~ SP
before

Description:

v77777777777 I~ SP
after

A jump is made, relative to the next instruction, by
the byte offset w.

0400101:03A 3-177

The P-Machine

UNI Set Union

Opeode: 219 DB

Operation: UNI

Staek:

I~ SP
set ..

set

~77777777777 ~
before

Deseription:

I~ SP
set

~77777777777 ~
after

The union (bit-wise 0 R) of the sets TOS and TO&-1
is pushed onto the stack.

3-178 0400101:03A

WAIT

Opcode:

Operation:

Stack:

Wait

223

WAIT

The P-Machine

DF

~ addr I~ SP
777777/7777

before

Description:

V/7777777777 I~ SP
after

TOS is the address of a semaphore. If the
semaphore's count is greater than zero, the count
is decremented by one. Otherwise, the current TIB
is put on the semaphore's wait queue, its Hang_Ptr
is set to TOS, and a task switch occurs.

0400101:03A 3-179

The P-Machine

XJP

Opcode:

Operation:

Stack:

Case Jump

214

XJP

DB

B

~ . t !HP
777 /777 77 77

before

Description:

v77777777777 I~ SP
after

B is the offset of the case jump table within the
constant pool of the current segment. TOS is the
index.

The case jump table is structured as follows:

I I
I WI I minimum index
1_- I
I I
1 W2 I maximum index
'-_________ I
I I
I I

table (W2-Wl)+1 word table

3-180 0400101:03A

The P-Machine

Every entry is an integer quantity in the byte sex
of the current segment. If the current segment has
opposite byte sex from the host processor, each
word in the table must be flipped before it is used.

If TOS is in the range W1 through W2, inclusive, a
jump is made, relative to the next instruction, by
the quantity in word (TOS - W1) in the table. (The
table is word-indexed starting with zero, and is
found just after word W2 in the case jump table.)
Otherwise, no jump is performed.

0400101:03A 3-181

The P-Machine

STANDARD PROCEDURES

The standard procedures are procedures that are
implemented in the PME directly, either for speed
or because the nature of the procedure requires
that it be written in native code. A standard
procedure is called via a CXG or SCXGl
instruction. Which procedure is executed is based
on the procedure number.

Most of the standard procedures require parameters
on the stack, and some expect a function return
value to be passed back. In some sense they act
more like individual p-codes than procedures,
because no RPU instruction is executed to return
control to the caller. For this reason, the
procedure descriptions that follow are presented in
the same format as were p-code
descriptions-showing the stack before and after
execution.

3-182 0400101:03A

The P-Machine

UNIT I/O PROCEDURES

UNITCLEAR

Procedure:

Stack:

(UNIT)

34

~ . t I~ SP

777/7777777
before

V77777777777 I~ SP
after

Description:

TOS is a unit number. The device with unit
number TOS is initialized to its "power-up" state.
On return, IORESULT contains status information.
For more information on UNITCLEAR, refer to the
BIOS documentation in Chapter 4.

0400101:03A 3-183

The P-Machine

UNITSTATUS

Procedure:

stack:

int

addr

int

before

Description:

(UNIT, STAT_REC, CONTROL)

36

~ SP

v77777777777 I~ SP
after

TOS is the control word. TOS-1 is the address of
a buffer. TOS-2 is the unit number. Status
information about the unit described in TOS-2 and
the direction described in TOS is written to the
buffer, TOS-l. If TOS = 0 the direction is output.
If TOS = 1 the direction is input. On return,
IORESULT contains status information. For more
information about UNITSTATUS, refer to the BIOS
documentation.

3-184 0400101:03A

UNITREAD

Procedure:

Stack:

int

int

int

: byte-ptr

t;;:j
before

Description:

The P-Machine

(UNIT, BUF, LEN, BLOCK, CTRL)

18

~ SP

V77777777777 I~ SP
after

TOS is the control word. T08-1 is the block
number. TOS-2 is the number of bytes to read.
TOS-3 is the address of the destination buffer.
TOS-4 is the unit number. The number of bytes
specified in TOS-2 is read from unit TOS-4 at
block TOS-l into buffer TOS-3. The control word
selects different modes of UNITREAD. On return,
IORESULT contains status information. For more
information about UNITREAD, refer to the BIOS
documentation.

0400101:03A 3-185

The P-Machine

UNITWRITE

Procedure:

Stack:

int

int

int

: byte-ptr

before

Description:

(UNIT, BUF, LEN, BLOCK, CTRL)

19

~ SP

V77777777777 I~ SP
after

TOS is the control word. TOS-1 is the block
number. TOS-2 is the number of bytes to write.
TOS-3 is the address of the source buffer. TOS-4
is the unit number. The number of bytes specified
in TOS-2 is written to unit TOS-4 at block TOS-1
from buffer TOS-3. The control word selects
different modes of UNITWRITE. On return,
IORESULT contains status information. For more
information about UNITWRITE, refer to the BIOS
documentation.

3-186 0400101:03A

UNITWAIT

Procedure:

Stack:

(UNIT)

33

The P-Machine

v77777777777 I~ SP
after

Description:

TOS is a unit number. The p-machine waits until
all I/O on unit TOS is completed. On return,
10RESULT contains status information. For more
information about UNITWAIT, refer to the BIOS
documentation.

0400101:03A 3-187

The P-Machine

UNITBUSY

Procedure:

stack:

int

o

before

Description:

(UNIT): BOOLEAN

31

~ SP

h boo! I*" SP
77777777777

after

TOS is the unit number. TOS-1 is a function
return word. UNITBUSY returns TRUE if there is
any outstanding I/O on device TOS, and FALSE
otherwise. On return, IORESULT contains status
information. For more information about
UNITBUSY, refer to the BIOS documentation.

3-188 0400101:03A

IORESULT

Procedure:

stack:

:INTEGER

30

The P-Machine

~7777707777771+- SP

before

Description:

TOS is a return word. IORESULT returns the
value of the p-machine register IORESULT.

0400101:03A 3-189

The P-Machine

IOCHECK

proeedure: 23

Staek:

v77777777777 I~ SP
before

Deseription:

V77777777777 I~ SP
after

IOCHECK tests the p-machine register IORESULT
for zero. If the register is nonzero, an I/O
execution error is issued.

3-190 0400101:03A

The P-Machine

STRING PROCEDURES

MOVELEFT

Procedure:

Stack:

(SOURCE, DEST, LENGTH)

15

I--_i_n_t __I~ SP

byte-ptr

byte-ptr

~77777777777l
before

Description:

V77777777777 I~ SP
after

TOS is the number of bytes to move. TOS-l is a
pointer to the destination. TOS-2 is a pointer to
the source. If TOS is zero or negative, no bytes
are moved. Otherwise, the bytes are moved one at
a time starting from the left (low order byte).

0400101:03A 3-191

The P-Machine

MOVERIGHT

Procedure:

Stack:

(SOURCE, DEST, LENGTH)

16

r--__in_t 1~ SP

byte-ptr

byte-ptr

V7777/777777 ~
before

Description:

v77777777777 I~ SP
after

TOS is the number of bytes to move. TOS-1 is a
pointer to the destination. TOS-2 is a pointer to
the source. If TOS is zero or negative, no bytes
are moved. Otherwise, the bytes are moved one at
a time starting from the right (high order byte).

3-192 0400101:03A

PILLCHAR

Procedure:

Stack:

The P-Machine

(DEST, LENGTH, CHAR)

21

__i_nt__--11 *" Sp

byte-ptr

byte-ptr

~77777777777 ~
before

Description:

v77777777777 I~ SP
after

TOS is the character. TOS-1 is the length to fill.
TOS-2 is the starting address for the fill. If
TOS-1 is zero or negative, no filling is done.
Otherwise, memory is filled with the byte TOS for
TOS-1 bytes starting at address TOS-2.

0400101:03A 3-193

The P-Machine

SCAN

Procedure:

Stack:

(LEN, EXP, SOURCE): INT

22

__w_o_r_d_~1~ SP

byte-ptr

byte

bool

int

o

before

Description:

~ int I~ SP
77777777777

after

TOS is a mask field (unused). TOS-1 is a pointer
to the array to scan. TOS-2 is the byte to look
for. TOS-3 is the scan kind (0 means until equal,
1 means until not equal). TOS-4 is the length to
scan. If TOS-4 is negative, the scan proceeds to
the left. TOS-S is the function result word.

3-194 0400101:03A

The P-Machine

The array at TOS-l is scanned in the direction
indicated in TOS-4 until the character TOS-2 is
found (TOS-3 = 0) or a nonrnatching character is
found (TOS-3 = 1) or until the length in TOS-4 is
exhausted. The distance between the character
where SCAN stopped and the start character is
passed back as the function result.

0400101:03A 3-195

The P-Machine

COMPILER PROCEDURES

TREESEARCH (ROOT, FOUNDP, TARGET): INT

Procedure: 38

Stack:

addr

addr

addr

o

before

Description:

~ SP

~ iot I+- SF
77777777777

after

TOS is a pointer to the target string, which is a
packed array of eight characters. TOS-1 is a
pointer to where the result of the search will be
saved. TOS-2 is a pointer to the root of the
identifier tree to be searched. TOS-3 is the return
word.

3-196 0400101:03A

The P-Machine

TREESEARCH searches the symbol table tree
TOS-2 for the target string TOS, returning a
pointer to where the target was found in the
variable pointed to by TOS-l. If the target wasn't
found, the variable pointed to by TOS-1 will point
to the leaf node of the tree that was searched
last. The function result returns status
information:

o target was found
1 target is to the right

-1 target is to the left

Each node of the tree contains the following fields
at the indicated byte offsets:

o name (8 characters)
8 right link (pointer)

10 left link (pointer)

0400101:03A 3-197

The P-Machine

IDSEARCH

Procedure:

stack:

addr

addr

before

Description:

(SYMREC, BUFFER)

37

~ SP

V77777777777 I~ SP
after

TOS is the address of a buffer. TOS-1 is the
address of a record that has the following fields at
the indicated byte offsets:

o SYMCURSOR
2 SY
4 OP
6 ID

IDSEARCH scans the buffer at byte offset
SYMCURSOR for an identifier (string beginning
with a letter, containing letters, digits and
underscores), ignoring underscores and masking
lowercase to uppercase. The identifier is
blank-filled to eight characters, then placed in ID
for a maximum of eight characters. SYMCURSOR
is updated to point just past the identifier.

3-198 0400101:03A

The P-Machine

Finally, the identifier is looked up in a table of
reserved words, and its two characteristics are
filled into SY and OP. If the identifier is not
found in the table, SY is set to 0 and OP is set to
15.

Here is the table of reserved words, along with the
SY and OP values for each one:

ID SY OP

AND 39 2
ARRAY 44 15
BEGIN 19 15
CASE 21 15
CONST 28 15
DIV 39 3
DO 6 15
DOWNTO 8 15
ELSE 3 15
END 9 15
EXTERNAL 53 15
FOR 2 15
FILE 46 15
FORWARD 34 15
FUNCTION 32 15
GOTO 26 15
IF 20 15
IMPLEMEN 52 15
IN 41 14
INTERFAC 51 15
LABEL 27 15
MOD 39 4
NOT 38 15
OF 11 15
OR 40 7
PACKED 43 15
PROCEDUR 31 15

0400101:03A 3-199

The P-Machine

PROCESS
PROGRAM
REPEAT
RECORD
SET
SEGMENT
SEPARATE
THEN
TO
TYPE
UNIT
UNTIL
USES
VAR
WHILE
WITH

3-200

56
33
22
45
42
33
54
12

7
29
50
10
49
30
23
25

15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

0400101:03A

The P-Machine

CODE POOL PROCEDURES

RELOCSEG

Procedure:

Stack:

(EREC)

4

Description:

V77777777777 I~ SP
after

TOS is the address of an E Rec. RELOCSEG
relocates the segment pointed to by the ERec.
Since RELOCSEG is called after a segment is first
read into memory, all relocation is performed.

0400101:03A 3-201

The P-Machine

MOVESEG

Procedure:

Stack:

int

addr

addr

before

Description:

(SIB, SRCPOOL, SRCOFFSET)

14

~ SP

v77777777777 I~ SP
after

TOS is an offset to the segment within a code
pool. TOS-1 is a pointer to a code pool descriptor
of which the first two words are the pointer to the
base of the pool. TOS-2 is the address of a SIB.

MOVESEG moves the segment at offset TOS in the
pool described by TOS-1 to the location specified
in the SIB pointed to by TOS-2, and relocates it.
Only segment-relative relocation is performed.

3-202 0400101:03A

The P-Machine

GBTPOOLBYTBS
(DEST, POOLDESC, OFFSET, NBYTES)

Procedure: 24

Stack:

int

int

addr

addr

before

Description:

~ SP

vlllllllllll I~ SP
after

TOS is the number of bytes to get. TOS-l is the
offset within the pool of the bytes to get. TOS-2
points to a code pool descriptor of which the first
two words point to the pool. TOS-3 points to the
buffer where the bytes will be placed.

GETPOOLBYTES get TOS bytes from the pool
described by TOS-2 at offset TOS-l, and places
them at TOS-3.

0400101:03A 3-203

The P-Machine

PUTPOOLBYTES
(SOURCE, POOLDESC, OFFSET, NBYTES)

Procedure: 25

Stack:

int

int

addr

addr

before

Description:

~ SP

v77777777777 I~ SP
after

TOS is the number of bytes to put. TOS-1 is the
offset within the pool of the bytes to put. TOS-2
points to a code pool descriptor of which the first
two words point to the pool. TOS-3 points to the
source buffer.

PUTPOOLBYTES writes TOS bytes from the buffer
TOS-3 to the pool described by TOS-2 at offset
TOS-l.

3-204 0400101:03A

The P-Machine

FLIPSEGBYTES (EREC, OFFSET, NWORDS)

Procedure: 26

Stack:

int

int

addr

before

Description:

~ SP

V77777777777 I~ SP
after

TOS is the number of words to flip. T08-1 is the
word offset within the segment where flipping will
take place. T08-2 is the address of the E_Rec
describing the segment.

FLIPSEGBYTES flips TOS words starting at word
offset T08-1 in the segment described by T08-2.

0400101:03A 3-205

The P-Machine

READSEG

Procedure:

Stack:

addr

o

before

Description:

(EREC): INTEGER

39

~ SP

~ in! I~ SP
77777777777

after

TOS is the address of the E Rec describing a
segment. TOS-l is the return word.

READSEG reads the segment described by TOS into
memory at the location described in the SIB. The
completion code in p-machine register IORESULT is
returned as the function result.

3-206 0400101:03A

The P-Machine

CONCURRENCY PROCEDURES

QUIET

Procedure: 27

Stack:

vn/n/n/II I~ SP
before

Description:

vllllnll/ll I~ SP
after

QUIET must disable all ITmachine events such that
no attached semaphore is signalled until the
corresponding call to ENABLE is made.

ENABLE

Procedure: 28

Stack:

Vll/nllnll I~ SP
before

Vlllln/nll I~ SP
after

Description:

ENABLE reenables ITmachine events that have been
disabled by QUIET.

0400101:03A 3-207

The P-Machine

ATTACH

Procedure:

Stack:

int

addr

before

Description:

(SEMAPHORE, VECTOR)

29

~ SP

V77777777777 I~ SP
after

TOS is the number of a p-machine event vector. It
must be in the range 0 through 63. TOS-l is the
address of a semaphore.

ATTACH associates the semaphore pointed to by
TOS-l with the vector TOS such that whenever the
event TOS is recognized, the semaphore is signaled.
If the semaphore pointer is NIL, vector TOS must
be unattached from any sempahore it was formerly
attached to. If TOS isn't in the range 0 through
63, no operation is performed.

3-208 0400101:03A

The P-Machine

MISCELLANEOUS PROCEDURES

TIME

Procedure:

Stack:

addr

addr

before

Description:

(HIWORD, LOWORD)

20

+- SP

V77777777777 I+- SP
after

TOS is a pointer to where the high word of the
time will be saved. TOS-1 is a pointer to where
the low word of the time will be saved.

TIME saves the high and low words of the system
clock (a 32-bit 60 Hz clock) in the indicated words.

0400101:03A 3-209

The P-Machine

POWEROPTEN (POWER): REAL

Procedure: 32

Stack:

,-__in_t 1*" Sp

o

~77777777777 ~
before

Description:

I~ SP
real

~77777777777 ~
after

TOS is a positive integer power. POWEROFTEN
returns the real value ten to the power of TOS. If
TOS < 0 or TOS > the largest expressible power, a
floating point execution error is issued.

3-210 0400101:03A

The P-Machine

LONG INTEGERS

The long integer data type is a nonscalar data type
unique to UCSD Pascal. Long integers may be up
to 36 decimal digits long. Although they lack some
of the flexibility of scalar types, long integers
allow operations on integers outside the range of
most microcomputers (generally, -32768 to +32767
on a 16-bit machine). In computations, long
integers act like real numbers; however, they act
more like sets in the way they are implemented and
in the way they are passed as parameters.

Number Format

On the stack (when used in calculations), long
integers are of variable length, and consist of a
length word followed by a number component.
An integer five words long that is on the top of
stack looks like this:

~---------------+
SP --) I 5 I

~---------------+
I I
I number I
I component I
I I
I I
+---------------+
I I

length word

five words of number

rest of stack

Every long integer on the stack has this format,
regardless of the processor. However, the actual
number encoding varies from processor to
processor. The number format for different
processors is given later in this section.

0400101:03A 3-211

The P-Machine

When a long integer is assigned to a variable, or
stored in a file on disk, only the number
component is present. The length word is
present only when the number is on the stack.
Each long integer variable is allocated a fixed
number of words. When a long integer is
assigned to a variable, the number must be
coerced to the storage size of the variable. If
this can't be done, an integer overflow execution
error occurs.

The storage size for long integers is from two to
ten words, based on the number of digits
specified in the declaration statement. The
following table shows the allocation size for each
declared size.

digits size (words)

1..4 2
5••8 3
9••12 4
13••16 5
17••20 6
21••24 7
25•• 28 8
29 ••32 9
33••36 10

3-212 0400101:03A

The P-Machine

The declaration size reflects the approximate
number of digits that may be stored in the
number. Since long integer formats vary from
processor to processor, more digits than the
declared number of digits may sometimes be
stored in a long integer variable. As a result,
the overflow value for a long integer may vary
from processor to processor. The fact that more
digits than the declared size may be stored in a
long integer variable shouldn't be relied upon,
since it would reduce the portability of a
program. The number of digits specified in the
declaration of a long integer should be treated as
the maximum number of digits that the number
will ever hold.

Long Integer Constants

Long integer constants are constructed at
run-time by code generated by the compiler.
This code builds each constant by doing a series
of calculations on integers, thus sidestepping the
problems associated with the fact that long
integer formats are processor-dependent.

Example 1. To build the long integer constant
12, the compiler generates code to do the
following:

CVT <l21

where 12 is an integer constant, and CVT is the
routine to convert an integer to a long integer.

0400101:03A 3-213

The P-Machine

Example 2.
235543, the
following:

To build the long integer constant
compiler generates code to do the

CVT(23554)*CVT(10) + CVT(3)

Example 3. To build -8733442, the compiler
generates code to do the following:

-(CVT(8733)*CVT(1000) + CVT(442))

Here is a listing of the actual p-code generated
for the last example. The long integer routines
called to do each operation are described in
detail later.

42(02A) LDCI 8733 811D22
45(02D) SLDC 18 12 CVT
46 <02E) SCXG LONGOPS 7202
48(030) LDCI 1000 81E803
51 (033) SLDC 18 12 CVT
52(034) SCXG LONGOPS 2 7202
54(036) SLDC 8 08
55(037) SCXG LONGOPS 2 7202
57 (039) LDCI 442 81BAOI
60(03C) SLDC 18 12 CVT
61(03D) SCXG LONGOPS 2 7202
63 (03F) SLDC 2 02 +
64(040) SCXG LONGOPS 2 7202
66(042) SLDC 6 06 NEG
67 (043) SCXG LONGOPS 2 7202
69(045) SLDC 10 OA

3-214 0400101:03A

The P-Machine

LONGOPS Routines

LONGOPS is the Pascal UNIT that implements
the long integer functions. LONGOPS contains
three procedures: FREADDEC reads a long
integer; FWRITEDEC writes a long integer; and
DECOPS performs the long integer arithmetic
functions.

Although LONGOPS isn't part of the p-machine
(it is in SYSTEM.LIBRARY), it isn't a normal
Pascal UNIT either. Normally, a Pascal
procedure or function must have fixed size
parameters, where the parameter size is known at
compile-time. There is one procedure in
LONGOPS (DECOPS) that takes variable size
parameters. One way to view this is that each
call to DECOPS is like the execution of a single
p-code in the PME. Different functions of
DECOPS take different parameters and return
different results, just as different p-codes do. In
fact, DECOPS performs functions very similar to
the set p-codes in the PME.

0400101:03A 3-215

The P-Machine

DECOPS Routines

DECOPS is an external (assembly language)
procedure in UNIT LONGOPS that performs the
long integer functions.

Parameters are passed to DECOPS on the stack.
On every call, the stack looks as follows:

+---------------+
SP --) I return address I

+---------------+
I function code I
+---------------+
I I
I parameters I
I I
+---------------+
I I

one or two words

one word

variable size

rest of stack

The return address is the standard return
information for any assembly-language routine.
Refer to the assembler documentation for a
description of this information. (The return
address isn't always on top of the stack. The
HP-8 7, for example, uses a separate stack.)

The function code is a word that describes the
function that is to be performed. The actions
performed by each function are discussed below,
along with the numeric value of the associated
function code. Function codes are even integers
between 0 and 20. Even integers are used to
facilitate jumping indirectly through a word array
of addresses.

3-216 0400101:03A

The P-Machine

The parameters vary for each long integer
function. The parameter requirements for each
routine are included in the description of the
routine.

Usually, DECOPS returns to the PME as a normal
assembly-language routine does. However, in
certain error conditions, DECOPS must return to
a different location in the PME so that an
execution error may be recognized. This method
of returning is usually via the .INTERP jump
vector, but there are exceptions to this.

Below are the descriptions of each routine in
DECOPS. The first line of each description
contains the function code, followed by a
descriptive name of the function. Next are
descriptions of the parameters and the return
value(s). Finally, there is a detailed description
of the function, including any error conditions
that should be recognized.

0400101:03A 3-217

The P-Machine

In the parameter and return value descriptions,
the top of stack (TOS) is on the left, and items
deeper on the stack are on the right. Here are
the abbreviations used in the descriptions:

LI Long Integer. A variable-length long
integer, containing a length word.

ALI Adjusted Long Integer. A fixed length
long integer that does not contain a
length word.

W Word. A l6-bit quantity.
B Boolean. A boolean quantity. l=TRUE,

O=FALSE.

o - Adjust

parameters:
return val:

<W>
<ALI>

Adjusts into an adjusted long integer
<ALI> suitable for assignment to a variable.
It does this by stripping off the size word
from , then expanding or contracting
until it is <W> words in length. If a
contraction can't be done because of overflow,
an integer overflow execution error occurs.

3-218 0400101:03A

The P-Machine

2 - Add

parameters:
return val:

<LI 2> <LI 1>
<LI 3>

Adds <LI 1> and <LI 2>, placing the result on
the stack as <LI 3>. If the result <LI 3> has
more than 36 digits, an integer overflow
execution error may occur.

4 - Subtract

parameters: <LI 2> <LI 1>
return val: <LI 3>

Subtracts <LI 2> from <LI 1>, placing the
result on the stack as <LI 3>. If the result
<LI 3> has more than 36 digits, an integer
overflow execution error may occur.

0400101:03A 3-219

The P-Machine

6 - Negate

parameters:
return val:

<LI 1>
<LI 2>

Negates <LI 1>, placing the result on the
stack as <LI 2>.

8 - Multiply

parameters: <LI 2> <LI 1>
return val: <LI 3>

Multiplies <LI 1> and <LI 2>, placing the result
on the stack as <LI 3>. If the result <LI 3>
has more than 36 digits, an integer overflow
execution error may occur.

10 - Divide

parameters: <LI 2> <LI 1>
return val: <LI 3>

Divides <LI 1> by <LI 2>, placing the result on
the stack as <LI 3>. If the result <LI 3> has
more than 36 digits, an integer overflow
execution error may occur. If <LI 2> is zero,
a divide-by-zero execution error occurs.

3-220 0400101:03A

The P-Machine

12 - Long Integer to String

parameters: <W 1> <W 2>
return val:

Converts into a string, placing the result
at the location pointed to by <W 2>. <W 1> is
the maximum length of the string. If
requires more than <W 1) characters to
represent, a string overflow execution error
occurs.

14 - T08-1 Integer to Long Integer

parameters: <LI 1> <W>
return val: <LI 1> <LI 2>

Converts the integer at TOS-l <W> into a long
integer <LI 2>, leaving the long integer at
TOS <LI 1> unchanged.

0400101:03A 3-221

The P-Machine

16 - Compare

parameters:
return val:

value of <W>

o
1
2
3
4
5

<W> <LI 2> <LI 1>

comparison

less than
less than or equal
greater than or equal
greater than
not equal
equal

Performs the comparison encoded in
the long integers <LI 1> and <LI 2>,
the boolean result on the stack.
cases, <LI 1> is compared to <LI 2>,
order.

18 - TOS Integer to Long Integer

parameters: <W>
return val:

<W> of
placing

In all
in that

Converts the integer at TOS <W> into a long
integer .

3-222 0400101:03A

The P-Machine

20 - Long Integer to Integer

parameters:
return val: <W>

Converts a long integer into an integer
<W>. If the conversion can't be made «LI>
isn't in the range -32768••32767), an integer
overflow execution error occurs.

0400101:03A 3-223

The P-Machine

Processor-Specific Information

8086/8088/LSI-ll/6809/9900

These processors use a two's complement
format that is stored in natural byte order
with the most significant bits appearing at the
lowest byte address. The most significant bit
represents the sign of the number; a 0 means
positive, and a 1 means negative.

Examples (hexadecimal):

0000 0000 6C33
FFFF FFF6
0000 0000

68000

is 27699
is -10
is a

The 68000 uses a sign-magnitude Binary-Coded
Decimal (BCD) format with the first word a
sign word. The magnitude part of the long
integer is stored in natural byte order, with
the most significant digits in the byte with the
lowest address, and the number is
right-justified within the field. In the sign
word, 0 means positive, and FFFF means
negative.

Examples:

00 00 00 02 76 99
FF FF aa 10
00 00 00 00
FF FF 00 00

3-224

s 27699
s -10
s a
s also a

0400101:03A

The P-Machine

Z80/8080/6502

These processors have the same format as the
68000 except that only the least significant
byte of the sign word is used (that is, 0000
means positive, and FFOO means negative).

Examples:

0000 00 02 76 99
FFOO 00 10
0000 00 00

HP-81

is 27699
is -10
is a

The HP-87 uses a ten's complement BCD
format with the least significant digit
appearing at the lowest address. A 9 in the
most significant digit means negative, a 0
means postive.

Examples <least significant digit first):

99 67 20 00
09 99 99 99
00 00 00 00

0400101:03A

is 27699
is -10
is a

3-225

s-
Low-Level 1/0 ~

<
ID--o

CHAPTER 4

LOW-LEVEL I/O

Low-Level I/O

THE I/O SUBSYSTEM

Besides emulating the p-machine, each PME must
contain some native code to perform certain
time-critical operations and deal with hardware
dependencies such as I/O devices. The body of
code that is not devoted to emulating p-code is
called the Run-Time Support Package (RSP). The
portion of the RSP that is responsible for I/O is
called the RSP/10.

To make the system as portable as possible, the
RSP/IO is machine-independent, except for a
portion called the Basic Input/Output Subsystem
(BIOS). The BIOS must vary depending on the
hardware in use, but the interface between the
BIOS and the RSP/10 is standard-calls to routines
in the BIOS are clearly defined.

ThUS, we have the I/O hierarchy shown in Figure
4-1, the user's I/O calls (that is, READLN,
WRITELN) are mapped by the compiler and
operating system into calls to the RSP (that is,
UNITREAD, UNITWRITE). The RSP/IO itself calls
the BIOS which controls the actual device
operations. It is important for the reader to
recognize that here we are discussing a synchronous
I/O system. In other words, when an I/O request
has been initiated by your program, control doesn't
return to that program until the I/O operation is
completed.

0400101:04A 4-3

Low-Level I/O

This chapter describes the behavior and interfaces
of the RSP/IO and BIOS. The SBIOS (Simplified
BIOS) is described in the Adaptable System
Installation Manual. The easiest way to describe its
relation to the BIOS and RSP/10 is to sketch the
history of I/O support within the p-System.

The first implementation was for the PDP-ll, which
has well-established standard interfaces to
peripheral devices (regardless of manufacturer). In
this environment, there was no need for I/O
adaptation.

When the p-System was adapted to the 8080 and
Z80, the p-System used CP/M BIOS run-time to
perform low-level I/O. As adaptations for
additional processors (that is, the 9900 and 6502)
were begun, however, it became clear that the
p-System needed some analog to the CP/M BIOS.
It was at this point that the p-System BIOS,
essentially as described in this chapter, was created
and standardized.

The final step in this I/O development took place
at SofTech Microsystems, where it was realized
that:

1. The BIOS definition didn't address the problem
of standardizing bootstrap mechanisms; and

2. Implementing a BIOS was a difficult task, and
virtually required the use of an already running
p-System.

4-4 0400101:04A

Low-Level I/O

The adaptable system was created to address these
problems. The SBIOS is as simple a hardware
interface as possible. It is called from a unit of
"interface coden that accepts BIOs-style calls and
emits SBIOS routine calls. This interface code
allows the PME/SBIOS interface to be simpler than
the BIOS interface. The RSP/10 is essentially
unchanged.

The adaptable system also addresses the bootstrap
problem by defining a hierarchy of bootstrap
components, only some of which need to be
implemented by the user installing a p-System.

A user who has access to a running p-System and
the source code for the PME and SBIOS interface
code may wish to implement a BIOS-level I/O
interface. This is potentially more efficient than
an SBIOS-Ievel adaptation, since the more elaborate
BIOS interface allows the implementor to take
advantage of such performance characteristics as
Direct Memory Access (DMA) support in the disk
interface.

Both BIOS and SBIOS I/O interfaces have been
created as the system was adapted to new
environments.

0400101:04A 4-5

-Language Level w

Low-Level I/O

A USER
I
v

THE SYSTEM
I

- - - - - - - - - , - - - - - - - - - - - - - - -
·PME Level- I

Idevice no., data area address,
Ibyte count
I [, block no., control wordJ
v

DEVICE I/O
(parameter checking)

I
v

+----------------+------------+-------------+-----------+
I I I , I
I I I I I
I Console I Pr inter IDisk I Remote IUser-
v v I v I defined

SPECIAL CHAR SPECIAL CHAR I SPECIAL CHAR IDevices
HANDLING HANDLING I HANDLING I

(OLEs,CRs,EOF (DLEs, CRs, EOF I (OLEs, CRs, EOF I
& alphalock) & alphalock) I & alphalock) I

(write) I I(read) I Idriveno., I Ideviceno.,
I I I Idata area I Idata area

singlel lsingle Isingle I address, Isingle I address,
datal Idata Idata Ibyte count, Idata Ibyte count,
byte I Ibyte Ibyte Ilogical Ibyte Ilogical

I I I I block no. I , block no.
I I I I I I
I - 1 I - - -I - - - - - - 1- - - -1- - - - - -

"BIOS I , I I I I "
Leve1 • I I v v v v

I I PRINTER DISK SERIAL LINE MISCELLANEDUS
I I PRIMITIVES MAPPER PRIMITIVES DEVICE
I +--------+ (Map logical DRIVERS
I I blocks into
I v track & sector)
1 TYPE-AHEAD 1
I QUEUE v
1 I DISK
I v PRIMITIVES
I (------SPECIAL CHAR
I HANDLING
I (start/stop, flush, break)
I ,
v v

SCREEN KEYBOARD
PRIMITIVES PRIMITIVES

4-6

Figure 4-1. I/O Subsystem Hierarchy

0400101:04A

0400101:04A

Low-Level I/O

4-7

Low-Level I/O

DEVICE I/O ROUTINES

As mentioned above, all language-level I/O requests
are eventually mapped by the compiler and
operating system .into calls to a group of intrinsic
routines known as the device I/O routines. The
programmer may call the device routines directly,
or may use the standard I/O syntax of the language
in use. The exact details of how this mapping is
accomplished don't concern us here. The device
I/O routines aren't written in Pascal, but are the
native code procedures that constitute the RSP/IO.

Throughout this chapter, it is assumed that all I/O
support at or below the device I/O level is
implemented in assembly language. If p-code is the
native language of the host processor, these
routines may be implemented in Pascal.

The RSP/10 routines are implemented and accessed
as routines of the operating system's unit KERNEL.
KERNEL is accessible as segment 1 of every
compilation unit. The actual code for the routines
may reside in the PME itself, instead of in
KERNEL.

4-8 0400101: 04A

Low-Level I/O

Calling the RSP/10

If you make direct calls to device VO routines,
they look like any other intrinsic routine. If
they actually were declared in Pascal, the
declarations would have the following format
(a.llowing a few illegitimate constructs such as
optional parameters and variable-length arrays):

PROCEDURE UNITREAD(UNITNUMBER : I~TEGER;

VAR DATAAREA : PACKED ARRAY [O •• BYTESTOTRANSFER-ll
OF O.• 255;

BYTESTOTRANSFER : INTEGER
[; LOGICALBLOCK : INTEGER]
[; CONTROL: INTEGER]):

PROCEDURE UNITWRITE(<same as for UNITREAD>):

FUNCTION UNITBUSY(UNITNUMBER : INTEGER) : BOOLEAN:

PROCEDURE UNITWAIT(UNITNUMBER : INTEGER):

PROCEDURE UNITCLEAR(UNITNUMBER : INTEGER };

PROCEDURE UNITSTATUS (UNITNlIMBER : INTEGER;
VAR STATUSWORDS : ARRAY [0 •• 29J OF INTEGER;

CONTROL : INTEGER);

Remember that no such declarations actually
exist in the system. They are intended to model
the parameters passed and returned by the native
code RSP/10 routines.

0400101:04A 4-9

Low-Level I/O

Devices and Device Numbers

Each device is referred to in the system by a
given number. The formal parameter
UNITNUMBER in the declarations above
determines which physical device the operation
is intended for. Thus, the device I/O routines
are device-transparent to the Pascal
programmer; the same procedure will handle
any physical device. Figure 4-2 is a list of
the predefined device numbers associated with
each physical device. The meaning of the
other parameters is discussed later in this
chapter.

Device Number

o
1
2
3
4
S
6
7
8
9

10
11
12
13 - 127

Volume Name

<Reserved for the system>
CONSOLE
SYSTERM
<Reserved for the system>
diskO
diskl
PRINTER
REMIN
REMOUT
disk2
disk3
disk4
diskS
Additional disks, subsidiary volumes,

and user-defined serial devices

Figure 4-2. Device Numbers

User-Defined Devices

The system reserves all device numbers above
127 for user-defined devices. They have no
preassigned names, but can be accessed through
the UNIT intrinsics as can devices with
preassigned numbers.

4-10 0400101:04A

Low-Level I/O

CONTROL Parameters

The CONTROL parameter to UNITREAD,
UNITWRITE, and UNITSTATUS is a word used
to pass special information to the RSP/10 and
BIOS regarding the handling of the I/O request.
The formats of the CONTROL words are shown
in Figures 4-3 and 4-4. ("Set" equals 1;
"reset" equals 0.)

MSB LSB
I 15-13 I 12-4 I 3 2 I I 0 I
I USER I I I I I
I DEFINED I (Reserved) I NOCRLF NOSPEC IPllYSSECTI ASYNC I
I I I I I I

Value I J I B 4 I 2 1 I

Figure 4-3. CONTROL Word Format
for UNITREAD and UNITWRITE

Bit 0 ASYNC

Bit 1
PHYSSECT

Bit 2 NOSPEC

0400101:04A

Set implies asynchronous I/O
request. Reset implies
synchronous I/O request. (This
bit should always be reset.)

Set implies "physical sector
mode" for disk I/O. Reset
implies "logical block mode" for
disk I/O.

Set implies "no special
character handling." Reset
implies "special character
handling."

4-11

Low-Level I/O

Bit 3 NOCRLF Set implies that no line-feeds
(LFs) are to be appended to
carriage returns (CRs) during
nondisk I/O. Reset implies LFs
are to be appended to CRs
during nondisk I/O.

Bits 4-12 Reserved for future expansion.

Bits 13-15 User-defined functions.

The default setting for all these bits is reset
(0).

MSB
I 15-13
I USER
IDEFINED
I

Value I

LSB
I 12-1 I
I I
I (Reserved) I IODIR
I I
I I

Figure 4-4. CONTROL Word Format
for UNITSTATUS

4-12

Bit 0 IODIR

Bits 1-12

Bits 13-15

Set implies the status of the
input channel is to be
returned. Reset implies the
status of the output channel is
to be returned.

Reserved for future expansion.

User-defined functions.

0400101:04A

Low-Level I/O

IORESULT and Completion Codes

At times, an I/O request will terminate
abnormally. To handle error conditions, a
program may use the intrinsic IORESULT. The
integer value returned by IORESULT describes
the status of the last I/O request.

Each call to UNITREAD, UNITWRITE,
UNITCLEAR, or UNITSTATUS causes a
"completion code" to be set in the SYSCOM data
area (SYSCOM, for SYStem COMmunication area,
is conventionally the only data space that may be
directly accessed by both the operating system
and the PME). Programmers may test the
completion code by using IORESULT.

0400101:04A 4-13

Low-Level I/O

The standard completion codes are given in
Figure 4-5 below.

Code

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20 - 127

Meaning

No error
Bad block, CRC error (parity)
Bad device number
Illegal I/O request
Data-com timeout
Volume is no longer on-line
File is no longer in directory
Illegal file name
No room; insufficient space on disk
No such volume on-line
No such file name in directory
Duplicate file
Not closed: attempt to open an open file
Not open: attempt to access a closed file
Bad format: error reading real or integer
Ring buffer overflow
Write attempt to protected disk
Illegal block number
Illegal buffer address
Bad text file size
Reserved for future expansion

Codes 128 through 255 are available for
non-predefined, device-dependent errors a

Figure 4-5. I/O Completion Codes

Logical Disk Structure

The system views a disk as a zero-based linear
array of 512-byte logical blocks. All disks in the
system have this logical structure, regardless of
their physical format. The physical allocation
units of a disk are commonly known as sectors;
these may vary widely from one model of drive
to another. The BIOS is responsible for mapping
the logical structure of a system disk onto the
physical structure of the device; that is, mapping
logical blocks onto physical sectors.

4-14 0400101:04A

Low-Level I/O

Physical Sector Addressing Mode

To provide enhanced flexibility for systems
programming at a machine-specific level, a
mechanism has been provided for directly
accessing the physical sectors of the disk.
When the PHYSSECT bit (bit 1, value 2) of the
CONTROL word is set on a call to UNITREAD
or UNITWRITE involving a disk unit, the I/O is
performed in physical sector mode. This has
the following effects:

1. The parameter LOGICALBLOCK is
interpreted by the BIOS as the physical
sector number (PSN). (In the future, this
may become the least significant 15 or 16
bits of the PSN.)

2. The parameter BYTESTOTRANSFER must be
O. (In the future, this may become the most
significant 16 bits of the PSN.)

0400101:04A 4-15

Low-Level I/O

Physical Sector Numbers

Typically, the physical sectors of a disk are
addressed by specifying both track and sector
numbers. That is, the disk is viewed as an
array of tracks where each track is an array
of sectors. If this data structure were
declared in Pascal, it would look like this:

type

BYTE = 0 .. 255;

SECTOR = array rD •• (BYTESperSECTOR-1l] of BYTE;

TRACK = array 11 .. SECTORSperTRACKl of SECTOR;

DISK = array [0 •. (TRACKSperDISK-1l] of TRACK;

NOTE: Here you should be using the
convention that track numbers are zero-based
but sector numbers start from one.

You can convert the type DISK into a linear
array of SECTOR as follows:

type

DISK = array [0 •• (TRACKSperDISK*SECTORSperTRACKl-1J of SECTOR;

You can use
addressing the
between the
numbers are:

this
disk

PSN,

linear representation for
by PSN. The relations

and track and sector

PSN = (TRACKNUMBER*SECTORSperTRACKl + SECTORNUMBER-1;
TRACKNUMBER = PSN div SECTORSperTRACK;
SECTORNUMBER = (PSN mod SECTORSperTRACKl + 1;

4-16 0400101:04A

Low-Level I/O

Pbysical Sector Size

Any physical sector size may be accommodated.
An I/O request in physical sector mode simply
causes a full sector to be transferred. The
programmer is responsible for ensuring that the
data area is at least large enough for one
physical sector.

Programs written using physical sector mode
aren't expected to be portable to different disk
hardware without some modification.

0400101:04A 4-17

Low-Level I/O

THE RSP

This section details the design and operation of the
Input/Output portion of the Run-Time Support
Package (RSP/IO). While the design itself is
processor- and hardware-independent, it is intended
to be realized in native code. Thus, the final
product will be processor-specific but still
independent of the exact peripherals used.

Calling Mechanisms

The following section discusses how each routine
in the RSP/10 is called from the Pascal level (or
the level of another compiled language). The
level of detail is intended to be such that an
implementor of the RSP will know how to pop
parameters off the stack when the RSP is called,
and how the stack should look when the RSP
returns.

4-18 0400101:04A

Low-Level I/O

UNITREAD and UNITWRITE

PROCEDURE UNITREAD(UNITNUMBER : INTEGER;
VAR DATAAREA : PACKED ARRAY IO •• BYTESTOTRANSFER-ll

OF O•• 255'
BYTESTOTRANSFER : INTEGER
[; LOGICALBLOCK :INTEGERl
[; CONTROL: INTEGER!);

PROCEDURE UNITWRITE(<same as for UNITREAD>);

Parameter Description

UNITNUMBER was discussed under "Devices
and Device Numbers" above.

0400101:04A 4-19

Low-Level I/O

DATAAREA is the programmer's buffer area
for transferring data. Describing it as a VAR
parameter signifies that UNITREAD and
UNITWRITE are passed a pointer to the start
of the data area. This pointer is actually
represented as an address couple consisting of
a word base and a byte offset. On processors
which use byte addressing, the effective
address is computed by simply adding the base
and the offset, since both quantities are in
bytes. For processors using word addressing,
the effective address is computed by indexing
byte-wise from the base address (always toward
higher locations). Generally, the address of
the start of the data area mayor may not be
on a word boundary. In the case of disk units,
however, it is only defined if it is on a word
boundary; that is, a Pascal programmer must
not allow actual parameters with odd numbered
indexes (like A[3]) to occur when transferring
to or from the disk. The reason for this
inconsistency is to avoid restricting disk data
to being moved byte by byte.

The third item in the parameter list,
BYTESTOTRANSFER, contains the number of
bytes to move between your data area and the
physical unit.

Two optional parameters follow for UNITREAD
and UNITWRITE: LOGICALBLOCK and
CONTROL. These parameters are optional for
the Pascal programmer; the compiler will assign
a default value of zero to both
LOGICALBLOCK is relevant only for disk reads
or writes, as discussed in "Logical Disk
Structure," above. It specifies the Pascal
logical block to be accessed. The CONTROL

4-20 0400101:04A

Low-Level va

word has been discussed above in "Control
Parameters."

Parameter Stack Format

UNITREAD and UNITWRITE receive their
parameters on the evaluation stack in the
following order (each box represents a 16-bit
quantity):

++++ 11/1111111111111/(- - - - - - (on return, SP
1---------------1 points here)
1 Unit Number 1
1---------------1
1 Word Base 1
1---------------1
1 Byte Offset I
1---------------1
I Byte Count 1
1---------------1
1 Block Number I (The stack shown here
1---------------1 grows down)
1 Control 1(------------- SP
1---------------1

Figure 4-6. Stack State on Entering
UNITREAD or UNITWRITE

Like ordinary Pascal procedures, these RSP
routines pop their parameters from the stack
when they are finished.

0400101:04A 4-21

Low-Level I/O

UNITBUSY

FUNCTION UNITBUSY(UNITNUMBER : INTEGER) BOOLEAN

The UNITBUSY function has meaning only in an
asynchronous environment and thus will always
return FALSE (0) for this synchronous
specification. The use of the stack is
illustrated in Figure 4-7.

++++ I1111111111111111111
+1------------------1

I Function Result 1
1------------------1
I Unit Number 1<---- SP
1------------------1

before

11111111111111111
1---------------1
I False I
1---------------1
1 1
1 1

after

4-22

Figure 4-7. Stack State Before
and After UNITBUSY

0400101:04A

Low-Level I/O

UNITWAIT

PROO:[lURE: UNITWAIT(UNITNUMBER : INTEGER).

Like UNITBUSY, UNITWAIT is only useful in an
asynchronous environment. In a synchronous
system, as described here, UNITWAIT becomes
essentially a no-op, since no unit will have a
I/O request pending. A single parameter is on
the top of stack when the procedure is called
and is popped off before the procedure returns.
The use of the stack is illustrated in Figure
4-8.

++++ 1///////////////1 SF ---->1///////////////1
1---------------1 1---------------1
1 Unit Number 1<---- SP 1 <empty> 1
1---- - - - ------ -- 1 1--------------- I

before after

Figure 4-8. Stack State Before and After
UNITWAIT and UNITCLEAR

0400101:04A 4-23

Low-Level I/O

UNITCLEAR

PROCEDURE UNITCLEAR(UNITNUMBER : INTEGER):

The purpose of UNITCLEAR is to restore the
specified device to its "initial" state. At the
RSP level, this means clearing any state flags
pertaining to the specified device. The
"initial" state for each device at the BIOS
level is defined in the section, "BIOS
Responsibilities," below. The stack format is
identical to that of UNITWAIT (see Figure 4-8
above).

UNITSTATUS

PROCEDURE UNITSTATUS(UNITNUMBER : INTEGER;
VAR STATUSWORDS : ARRAY [0 .. 29J OF INTEGER;

CONTROL : INTEGER):

The purpose of UNITSTATUS is to acquire
various device-dependent information from the
specified UNIT. The procedure is passed a
pointer to a status record (whose length is a
maximum of 30 words) into which the status
words are sequentially stored (note that users
may define words starting at word 29 and
allocating toward word 0, to allow for the
systemts use of the first words of the record)
and a CONTROL word.

4-24 0400101:04A

Low-Level I/O

UNITSTATUS receives its parameters on the
evaluation stack in the following order (each
box represents a 16-bit quantity):

++++ 1///////////////1<----------- (on return, SP
1---------------1 points here)
I Unit Number 1
1---------------1
I Status 1
1 Record 1 (The stack shown here
I Pointer 1 grows down)
1---------------1
1 Control 1<------------- SP
1---------------1

Figure 4-9. Stack State Before
and After UNITSTATUS

RSP Responsibilities

This section details the processing to be
performed by the RSP/10. The primary function
of the RSP /10 is to manage calls to the BIOS.
Secondarily, the RSP /10 is responsible for
handling certain special functions, which are
described here.

Special Character Output Handling

Output to the printer, console, remote, or
serial units must properly handle blank
compression codes and carriage returns.

0400101:04A 4-25

Low-Level I/O

Blank Compression Code (DLE's)

The system supports text files that contain a
two-byte blank compression code (only at the
beginning of a line). It is the responsibility
of the RSP /10 to decode the blank
compression code and send an appropriate
number of blanks. The first byte is an
ASCII DLE (decimal 16), which signals that
the next byte contains the excess-32 number
of blanks to insert (that is, it should be
interpreted as being the <number of blanks
to be sent>+32). Therefore, the next byte
following the DLE should be processed by
subtracting 32 from its value and sending
that number of blanks. Note that negative
results, obviously in error, are translated to
a value of zero. Also note that the
blank-count byte may not be the next input
byte processed, because of device switching.
This, therefore, requires the maintenance of
a flag for each device to indicate that it is
currently processing a DLE. The DLE
character and the blank-count byte aren't
normally sent to the device (see the
paragraph, "NOSPEC Bit," below).

Carriage Return - Line Feed

Text files contain ASCII CR's (decimal 13) at
the end of lines. We define this character
as meaning "New Line"; that is, a carriage
return followed by a line feed. Thus, it is
the responsibility of the RSP/10 to send an
ASCII LF (decimal 10) after sending each
CR.

4-26 0400101:04A

Low-Level I/O

NOCRLF Bit

When bit 3 (value 8) of the CONTROL
parameter is set, the special handling
accorded a CR is turned off; that is, a LF
isn't automatically appended, and the CR is
sent out like another character.

Special Character Input Handling

There are several characters which should
receive special treatment when received from
the console, the printer, the remote or the
serial devices, in a complete implementation of
this I/O system. All but two of them,
however, are handled by the BIOS. Those
which are handled in the RSP/10 are the EOF
and ALPHALOCK characters.

0400101:04A 4-27

Low-Level I/O

BOP Character

The EOF character, when received from the
console, printer or remote devices, signals
that the end-of-the-file has been reached on
that particular unit. Rather than being a
fixed ASCII code, EOF is a "soft character."
That is, the exact character code which will
be interpreteG as end-of-file may be changed
during system execution by the Pascal user.
Further discussion of the soft characters
used by the I/O subsystem may be found in
the section, "Character Codes," below. The
EOF character is in the SYSCOM data area
and must be accessed by the RSP/IO to
determine what character to look for. When
the EOF character is found in the input
stream, the action to be taken depends
somewhat upon which device was referenced.
If you are reading from UNIT 1 (CONSOLE:),
then the rest of your buffer, starting at the
current position, is packed with nulls
(decimal 0). For UNIT 2 (SYSTERM:), the
printer and the remote, the EOF character is
put into your buffer. In all cases, no
further characters are transferred to the
buffer and control returns immediately.

4-28 0400101:04A

Low-Level I/O

ALPBALOCK Character

The ALPHALOCK character, when received
from a device by the RSP/IO, signals a
default case change for all alphabetic
characters. All lowercase alphabetic
characters (that is, 'a' to 'z') received after
the ALPHALOCK character will be converted
to uppercase. Receipt of another
ALPHALOCK character will cause the case
to revert back to nonconverting mode (the
default mode). As for DLE handling
described above, a flag, for each device to
indicate that it is currently in the
ALPHALOCK state, should be maintained to
ensure proper handling when devices are
switched. The ALPHALOCK character is not
normally returned in the buffer (see the
paragraph, "NOSPEC Bit" below).

Other Characters

The remaining special input
characters-BREAK, START/STOP, FLUSH,
and CHARMASK-are used only for input
from the console, not from the printer or
remote devices. They are handled by the
BIOS and are described under "Input
Options," below.

0400101:04A 4-29

Low-Level I/O

NOSPEC Bit

When bit 2 (value 4) of the CONTROL
parameter is set, the special handling accorded
DLE's, and the EOF and ALPHALOCK sensing
functions described above are turned off.
These characters are then transferred as are
any other characters. The BIOS functions
aren't affected.

Translation for Subsidiary Volumes

The RSP is also responsible for converting disk
read/write calls to subsidiary volumes into disk
calls for accessing the physical disk drive
(instead of the virtual subsidiary volume).

The SYSCOM area contains a pointer to the
unitable which contains a record for each
p-System unit. Each record for storage devices
contains a block offset and a physical disk unit
number. The RSP must look up calls to
subsidiary volumes and give the physcial disk
number and correct block number when the call
to the BIOS is made.

4-30 0400101:04A

Low-Level I/O

The sUbsidiary volume requires some special
checking in the RSP. The following Pascal
code fragment describes how the RSP handles
subsidiary volumes.

if unit' in [syscom".subsidstart ••
syscom".subsidstart + syscom".unitdivision.subsidmax -11

then {translate svol parameters}
with syscom".unitable"[unit.1 do

begin .
if ueovblk~O then return_ioresult(9) I
if block' >~ ueovblk then return_ioresult< 17 II
block' :~ block' + ublkoff;
unit' :~ uphysvol;

end
else {no translation for other volumes neededJI

0400101:04A 4-31

Low-Level I/O

BIOS

As explained above, the BIOS is responsible for
providing the actual access to I/O devices. Both
the design and implementation of the BIOS are
specific to a given processor and I/O configuration.
In this section, we will attempt to specify the
nature of the BIOS in det8il sufficient for an
experienced programmer to write the code for a
given processor and a set of peripherals.

The general scheme discussed below uses vectors
from the RSP/IO to the BIOS subroutines for
reading, writing, initializing and controlling, and
answering status requests. The exact vector
scheme and means of passing parameters must be
worked out separately for each processor.
Arrangements that have already been worked out
for certain processors are illustrated in
"Processor-Specific BIOS Calls," below.

Design Goals

The speed at which BIOS code executes is fairly
insignificant compared to the (slow) speed of the
I/O devices that it handles. When peripherals are
changed, which may occur frequently, it often
proves that only minor changes need to be made
to an existing BIOS to service the new hardware.
Also, since the BIOS always resides in main
memory, each byte it occupies means one byte
less is available to the programmer. For these
reasons, we suggest that major design goals
(assuming correctness!) be: (1) compactness; and
(2) clarity.

4-32 0400101:04A

Low-Level I/O

Like the rest of the PME, the BIOS should be
ROM-able. Obviously, it will also require access
to some RAM. The addresses that the BIOS
references should be specified in the assembly
code by equates, so that it is a simple matter to
change them and reassemble the BIOS whenever
there is a change in the I/O ports or the memory
configuration.

Completion Codes

All read, write, initialization and control, and
status calls to the BIOS must return a byte to
the RSP that contains status information about
the I/O request just serviced. The value of this
byte is the "completion code" discussed in the
section, "IORESULT and Completion Codes,"
above. Most of the standard completion codes
aren't relevant to the BIOS-they are returned by
the operating system for file errors and the like.
The following standard errors can be returned by
the BIOS:

o No error
1 CRC error
2 Illegal device number
3 Illegal operation on device
4 Undefined hardware error
9 Device not on line

15 Ring buffer overflow
16 Write protect: write attempt to protected disk
17 Illegal block number
18 Illegal buffer address

All other errors are considered
hardware-dependent. For these, the BIOS should
return codes in the range 128 through 255. The
selection of appropriate codes is left to the BIOS
writer.

0400101:04A 4-33

Low-Level I/O

NOTE: Any predefined devices not implemented
must arrange to return a completion code of 9
("device not on-line") when an attempt is made to
initialize or use them.

Any user-defined devices not implemented should
return a completion code of 2 ("illegal device
number") when an attempt is made to access
them.

Calling Mechanisms

In this section, we discuss the parameters
required in the BIOS calls for each device. Each
device has four BIOS calls associated with it:
READ, WRITE, CONTROL, and STATUS. Each
device has varying needs for information
associated with these functions. Remember that
all calls must return a completion-code byte.
The BIOS calling requirements are summarized
below.

Console

Only one parameter is needed for reading and
writing-the data byte to be transferred. The
status request requires two parameters: the
CONTROL word and the pointer to the status
record. For initialization and control of the
console, the BIOS requires a number of special
control characters. These are provided by
passing the BIOS console initialization routine a
pointer to the base of the SYSCOM data area,
and a pointer to a break-handler routine.

4-34 0400101:04A

Low-Level I/O

Printer

To read from and write to the printer, a single
parameter is required-the byte that contains
the data. To check the status, the CONTROL
word and the pointer to the status record are
required. For initialization and control, no
parameters are needed.

Disks

Reading and writing with disk devices requires
five parameters:

1. A starting logical block number as described
above.

2. A count of the number of bytes to transfer
(positive signed 16 bits; that is, 0 to 32K-1).

3. The address of the data area to transfer to
or from.

4. A drive number (0 through n-1, given n
drives. Currently n=6 is assumed).

5. The CONTROL parameter.

To check the status, the CONTROL word and
a pointer to the status record are passed as
parameters. For initialization and control, the
drive number is passed.

0400101:04A 4-35

Low-Level I/O

Remote

The remote device requires a single parameter
for reading and writing-a byte that contains
the data being transferred. As with the
devices just described, the status requires the
CONTROL word and the pointer to the status
record. Initialization and control of the
remote device requires no parameters.

User-Defined Devices

Reading and writing with a user-defined device
requires five parameters:

1. A starting logical block number as described
above.

2. A count of the number of bytes to transfer
(positive signed 16 bits, that is, 0 to 32K-1).

3. The address of the data area to transfer to
or from.

4. A device number (this will be the same as
UNITNUMBER).

5. The CONTROL parameter.

The native code in the BIOS may choose to
ignore some of this information, of course.

4-36 0400101: 04A

Low-Level VO

When checking status, the CONTROL word,
device number, and a pointer to the status
record are passed. For initialization and
control, the device number is passed. It is left
to the device handler to determine the specific
device from its device number.

Character Codes

The system assumes that the printer and console
devices will support the use of printable ASCII
characters and a few standard control codes (CR,
LF, SP, NUL and BEL). The remaining control
codes that may be useful (such as cursor
positioning and screen erasure) are "soft"
characters that may be changed by the user
(using the utility SETUP) to meet the
requirements of some particular hardware.

These soft characters, along with all other
information that is entered using SETUP, are
stored in the file *SYSTEM.MISCINFO.
SYSTEM.MISCINFO is read into a portion of the
global data area SYSCOM whenever the system is
booted or reinitialized.

0400101:04A 4-37

Low-Level I/O

The reason for keeping this hardware-dependent
information at such a high level to be able to
change a terminal (as happens fairly often)
without creating a new BIOS. One way to do
this is to map logical control symbols into control
codes that are recognized by the hardware.

Suppose, for example, that there is a predeclared
procedure CURSORBACK which causes the cursor
on a screen terminal to move left one column.
Somewhere in the system, CURSORBACK must
cause a control code to be sent to the terminal,
which will cause the desired response; control-U,
control-H, or an escape sequence. One way to
do this would be for the compiler to emit a
standard code which the BIOS then translates
into whatever is correct for the current terminal.
This has the disadvantage of requiring a new
BIOS for every slightly different terminal. The
approach which we have taken sees to it that
Hie correct code is sent to the BIOS for the
terminal that is currently on-line.

Since many devices can make use of 8-bit control
codes, the system makes no assumptions about the
relevance of the high-order bit, and transfers the
whole byte unchanged. When using 7-bit ASCII,
the value of the high-order bit is defined to be
zero. This means that the BIOS must mask all
characters from the console with the character
mask in the SYSCOM, which is 127 (decimal) if
7-bit ASCII is being used.

4-38 0400101:04A

Low-Level I/O

The RSP sends both uppercase and lowercase
characters to the BIOS. If a device can handle
only uppercase characters, the BIOS must map
lowercase into uppercase.

BIOS Responsibilities

Console

In the following discussion, the console device
is assumed to be a CRT terminal.

Console Output Requirements

As a minimum, every console device should
provide the following keyboard functions:

CR <carriage ret urn> (hexadecimal
OD) - Moves the cursor to the beginning
of the current line (column 0).

LP <line feed> (hexadecimal OA) - Moves
the cursor down one line while the column
position remains the same. Starting from
any but the last line on the screen, the
contents of the screen should remain the
same while the cursor moves downward.
If the cursor is on the last line when the
LF is issued, it should remain in the same
position while the rest of the display
scrolls upward one line and the bottom
line clears.

0400101:04A 4-39

Low-Level I/O

BEL <bell> (hexadecimal 07) - If an
audio signal is available, it will sound
when the appropriate key is pressed. If
one isn't available, the terminal will do
nothing.

SP <space> (hexadecimal 20) - Writes a
space at the current cursor position
(erasing whatever is there) and advance
the cursor position by one column. If the
cursor is already at the last position in a
line, the position of the cursor after the
SP is undefined. (We prefer that the
cursor remain in its prior position in this
case. If the cursor is in the last column
of the last line on the screen, not only is
the position of the cursor undefined after
the SP, but so is the state of the
screen-maybe it scrolled and maybe it
didn't. We prefer that the cursor remain
where it was and that the screen not
scroll.)

NUL <null> (00) - Causes a delay of
the time required to write one character.
The state of the console shouldn't change.

Printable Characters (hexadecimal 21-7E)
- Same as the discussion for SP, except,
of course, write the character.

4-40 0400101:04A

Low-Level I/O

NOTE: The effect of sending nonprintable
characters other than those described above
isn't defined here since it varies from
terminal to terminal.

Console Output Options

The following set of cursor and screen
functions should be provided if possible. The
control characters or sequences of characters
that perform these functions are left
unspecified (they are soft characters). If a
stand-alone ASCII terminal is connected to
the host system, these functions may be
provided by the terminal itself. In this case,
all the BIOS need do is pass the appropriate
control characters.

Reverse Line Feed: Moves the cursor to
the next line higher on the screen without
changing the column or the contents of the
screen. If the cursor is already on the top
line, the result is undefined. If possible, the
screen should reverse-scroll in such a case,
or if that isn't feasible, the cursor and
screen should just remain as they were.

0400101:04A 4-41

Low-Level I/O

Non-Destructive Forward and Backward
Space: Moves the cursor in the direction
indicated without changing the contents of
the screen (that is, moves it
non-destructively). The position of the
cursor is undefined if an attempt is made to
move it beyond the beginning or the end of
a line. The preferred result is that cursor
and screen remain unchanged in such a case.

Cursor HOME: Moves the cursor to the
upper left-hand corner of the screen without
changing the contents of the screen.

Cursor X,Y Positioning: Moves the cursor
to some absolutely determined row and
column without disturbing the contents of the
screen. The result is undefined if an
attempt is made to move the cursor to a
nonexistent position.

Erase to End of Screen: Erases from the
cursor position to the end of the screen,
leaving the cursor where it started and the
other contents of the screen undisturbed.

Erase to End of Line: Erases from the
cursor position to the end of the current
line, leaving the cursor where it started and
the rest of the screen undisturbed.

4-42 0400101:04A

Low-Level I/O

Console Input Requirements

Input from the console should not be echoed
to the screen by the BIOS; this function is
handled by RSP/IO. Keys which represent
ASCII characters should generate 8-bit codes
between 0 and 127. Other (non-ASCll, that
is, special function) keys can generate codes
between 128 and 255, if desired.

Console Input Options

If possible, we recommend that the console
input BIOS be responsible for the following
special functions.

0400101:04A 4-43

Low-Level I/O

START/STOP

The START/STOP character is used to
control console output. When START/STOP
(a soft character) is received, console output
is suspended until: (1) another START/STOP
character is received; (2) a FLUSH character
is received; (3) the console BIOS is
reinitialized; or (4) the BREAK character is
received. The action to take in the last
three cases is discussed below. Should
another START/STOP character be received,
the suspended activities should resume
exactly as they left off. The chief benefit
of this arrangement is that you can suspend
output processes which are proceeding too
fast (for example, a text file scrolling across
the screen at 9600 baud). The suspension
process takes place wholly within the BIOS,
and requires no communication to the RSP.
(Note that the START/STOP character is
never returned to the RSP. The queueing of
keyboard input, if implemented, should
continue during the suspension.)

4-44 0400101:04A

Low-Level I/O

FLUSH

FLUSH is another soft control character.
When FLUSH is typed, the console output
BIOS discards all output characters (that is,
doesn't display them) until: (1) FLUSH is
entered again; (2) input is requested from the
console BIOS; (3) the console BIOS is
reinitialized; or (4) the BREAK character is
received. The FLUSH character is never
returned to the RSP. If FLUSH is received
while a START/STOP suspension is pending,
the suspension is canceled and FLUSH has its
usual effect. This feature is useful when a
long text file is being displayed on the
console and you're tired of looking at it. If
you push FLUSH, it terminates rather
quickly. It is also useful when a process is
generating console output that is irrelevant,
but slows down the process. Note that
FLUSH applies only to console output.

0400101:04A 4-45

Low-Level I/O

BREAK

When BREAK (also a soft character) is
entered, the console input BIOS should check
the state of the NOBREAK flag bit in the
SYSCOM data area. If the NOBREAK flag
is aI, then the BREAK key should be
ignored (the console input routine should go
back to waiting for a character from the
console). If the NOBREAK flag is a 0, then
the BIOS should immediately give control to
a special PME routine. The vector to this
routine is passed at console initialization
time. After execution of the BREAK
routine, the BIOS should continue as before.
The BREAK routine is responsible for
notifying the PME that a BREAK should be
executed before the next p-code is
interpreted. (Note that the BREAK
character is never returned to the RSP.
Receipt of BREAK should terminate any
START/STOP or FLUSH suspension pending.)

The system stores the NOBREAK boolean in
the data area called SYSCOM. A pointer to
SYSCOM is passed to the console
initialization routine. The byte containing
the NOBREAK boolean must be masked with
01000000 binary (40 hexadecimal) before
examining the NOBREAK boolean, the other
bits aren't necessarily zero.

4-46 0400101:04A

Low-Level I/O

Type-Ahead

When nonspecial characters (ones not
described in the sections above) are received
from the keyboard, and when a no read
request is pending, they should be queued
until the next read request. The next read
request should remove the first character
from the queue. When characters in excess
of the maximum queue size are received,
they should be ignored; the queue should
remain intact. While a type-ahead of even 1
character is better than none at all, we
recommend a minimum queue size of about 20
characters. If possible, the bell should be
sounded for each character entered from the
keyboard after no room remains in the queue.

Input Character Mask

In the p-System, prior to version IV.l, all
characters input from the console were
masked with 7F (hexadecimal) to clear the
parity bit in bit 7. This changed, in version
IV.l, to allow terminals (or keyboards) that
use full 8-bit cha.racter codes to return them
unmasked, and to continue to allow terminals
that needed to have the parity bit cleared to
work.

0400l0l:04A 4-47

Low-Level I/O

Every character read from the console should
be ANDed with the CHAR_MASK byte found
in the SYSCOM data area. This will be set
with the SETUP utility to be either 7F or
FF (hexadecimal) as needed. The masking
should be done before checking for BREAK,
START/STOP or FLUSH.

Initialization and Control

The initialization and control part of the
console BIOS is responsible for the following
tasks (and whatever else the BIOS implementor
finds expedient):

4-48 0400101:04A

Low-Level I/O

SYSCOM Data Area: The system stores soft
characters: START/STOP, FLUSH, BREAK and
other special variables in the SYSCOM data
area. These are variables that must be
accessible from both the operating system and
the low-level routines (PME, RSP, and BIOS).
One parameter to the console initialization and
control routine is a pointer to the start of the
SYSCOM area. The SYSCOM is a packed
record declared in the interface section of the
unit KERNEL. Byte offsets within SYSCOM
depend on the processor sex (low-byte or
high-byte first). The offsets to variables used
in the BIOS and RSP are (expressed as positive
byte offsets):

LSB first (decimal) MSB first (decimal)
dec imal hex octal decimal hex octal psage
------------------- -------------------

FLUSH 83 53 123 82 52 122 BIOS
BREAK 84 54 124 85 55 125 BIOS
STOP/START - 85 55 125 84 54 124 BIOS
CHARMASK 92 5C 134 93 5D 135 BIOS
NOBREAK 58 3A 72 59 3B 73 BIOS

EOF 82 53 122 83 53 123 RSP
ALPHALOCK - 93 5D 135 92 5C 134 RSP

BREAK Vector: Another initialization and
control parameter is the address of the PME
routine which handles BREAK. The console
initialization code is responsible for setting up
a vector to this address via its private data
area and calling this routine when the BREAK
character is received.

0400101:04A 4-49

Low-Level I/O

Flags: Initialization should cause the
START/STOP and FLUSH flags to be cleared
(or whatever else may be required to return to
normal).

Type-Ahead Queue: Initialization should cause
any characters currently waiting in the
type-ahead queue to be discarded.

Console Status

As described in "Control Parameters," at the
beginning of this chapter, bit 0 (value 1) of
the CONTROL word defines the direction of
the status request. The request should
return, in the first word of the status
record, the number of characters currently
queued for the direction specified. If some
form of buffering is being used, this will
simply be the number of characters in the
buffer. If no buffering is implemented, the
output status will always return 0, but the
input status will return 1 if a character is
waiting to be read, or 0 if none is waiting.

Printer

The printer is expected to be a line printer or
other hard copy device. In actual practice,
any ASCII display device may be used.

4-50 0400101:04A

Low-Level I/O

Printer Output Requirements

In order to serve the widest variety of hard
copy devices, the RSP/IO doesn't buffer a
line of text and send it all at once. Rather,
it sends the printer BIOS a single character
at a time. Many line printers must buffer a
line and then print it all at once; if 'this is
the case, it is the BIOS that must do so, in
which case, the BIOS must recognize the end
of a line (EOLN). EOLN is signalled by a
certain character; the possibilities B-re listed
below:

CR <carriage return> (hexadecimal OD)
Print the line and return the carriage to the
first column. An automatic line feed should
not be done.

LF <line feed> (hexadecimal OA) - In
normal operation, the RSP/IO will only send
an LF to the BIOS immediately after a CR.
If the hardware allows a simple line feed to
be performed (without a return), then this
should be done. If a complete "new line"
operation (that is, return and line feed) is
the only way your printer can print a line,
then do so at an LF-don't do anything about
a CR.

0400101:04A 4-51

Low-Level I/O

FF <form feed> (hexadecimal OC) - The
printer should advance the paper to
top-of-form, if possible, and perform a
carriage return. If no such feature is
available, the printer may execute a "new
line" operation; that is, a return followed by
a line feed.

Printer Input Requirements

There are no strict requirements for input
from the printer device. If the printer
device has the capability to transmit data,
then the printer input BIOS should return all
eight data bits unchanged. If not, then input
shouldn't be allowed and should return
completion code 3 ("illegal operation on
device").

Printer Initialization and Control

Initialization of the printer device should
make it ready to print at the beginning of a
blank line. A "new line" (carriage return
and line feed) operation may be in order
here. Any characters that have been
buffered but not printed are lost. The
printer doesn't need to do a form feed each
time it is initialized.

4-52 0400101:04A

Low-Level I/O

Printer Status

As described above, the number of characters
buffered for the direction specified in the
CONTROL word should be returned in the
first status word. If the printer has no form
of self-checking, return O.

When returning output channel status the
number of characters buffered has a special
meaning. A zero returned (for number of
characters buffered) means the printer is
ready to receive a character, a non-zerc~

value in interpreted as meaning the printer
isn't ready to receive another character.
The print spooler uses this to determine if it
can send a character to the printer without
hanging the system (in the background task)
on a write to the printer.

Disk

Mapping Blocks on Physical Sectors

The disk device may be any type of disk
drive (for example, floppy or hard disk). The
vetva] sectoring arrangements of the disk are
immaterial. The system addresses the disk in
terms of consecutive logical blocks of 512
bytes each. A primary function of the disk
BIOS, therefore, is to provide an appropriate
mapping scheme into the actual (physical)
sectors used on the disk. The sector
interleaving algorithm should be optimal for
the hardware.

0400101:04A 4-53

Low-Level I/O

The system makes no assumptions about the
interleaving method used by the BIOS (except
that it works!).

Bootstrap Location

While bootstrap schemes vary, typical
implementations make use of a hardware
(usually ROM) bootstrap to load and execute
a primary software bootstrap which, in turn,
loads and executes a secondary software
bootstrap. The secondary bootstrap then
loads the PME and operating system,
performs required initializations, and starts
the system.

To be accessible to the hardware bootstrap,
the primary software bootstrap must reside
at a location on the disk which is
predetermined by the hardware vendor.
Since these locations can vary widely, it is
necessary that the system's requirements for
a physical disk format be flexible in this
regard.

The primary bootstrap area must not overlap
disk data strllctures maintained by the system
(chiefly the directory and the bootstrap
itself).

Logical blocks 0 and 1 of each disk are
usually reserved for bootstrap code (a total
of 1024 bytes). This is the most convenient
alternative.

4-54 0400101:04A

Low-Level I/O

If 1024 bytes aren't enough room, or if the
interleaving format is unacceptable to the
hardware bootstrap, the primary bootstrap
area must be outside of the "Pascal disk."
The Pascal logical blocks must be mapped
onto the disk in such a way that the
hardware-defined bootstrap area is
inaccessible to the p-System as a logical
block. (It will still be accessible in physical
Sector Mode, see above.)

For adaptable systems, full details about
bootstrap locations and the mechanisms of
booting may be found in the Adaptable
System Installation Manual.

Physical Sector Mode

When bit 1 (value 2) of the CONTROL word
is set, disk access should be performed in
Physical Sector Mode, as described in the
section, "Physical Sector Addressing Mode,"
above.

0400101:04A 4-55

Low-Level I/O

Disk Output Requirements

The disk device BIOS must transfer as many
actual sectors DS Elre needed to accommodate
the data. To simplify a disk-write in which
(BYTESTOTRANSFER) MOD 512 isn't equal
to zero (for example, a block is partially
written to), the remaining contents of the
last block are undefined. This makes it
possible to write as much of whatever
garbage remains in the buffer; if that is
most convenient, to fill up a whole sector.
Figure 4-10 illustrates this situation. The
language level is responsible for keeping
track (in logical block numbers and byte
counts) of where the good data is.

EXAMPLE:

Write to disk.

Number of bytes to transfer = 1174
starting logical block number = 72
Data area address = DATAAREA

I : I
Block 72 I Block 73 Block 74 I

(512 bytes) I (512 bytes) 150 : <362 bytes) I
1 I Ibytes: I
I <-----------------data------------------>: <undefined> I
I I , I

I
start of data area

I I
end of data area I

I
end of last block

4-56

Figure 4-10. State of Blocks on Disk
After Being Written

0400101:04A

Low-Level I/O

Disk Input Requirements

On input from a disk device, it's not
permissible to over-write the end of the
assigned data area. Therefore, the BIOS is
responsible for transferring no more than the
number of bytes requested. One way to
accomplish this is to buffer the last sector
and then transfer only the requested part.

Disk Initialization and Control

Initialization of a disk device should bring it
to a state in which it is ready to read or
write from any given track or sector. For
some drives with simple controllers, the head
may need to be stepped to track 0 to
facilitate the BIOS disk driver's remembering
the current track. Any buffered data is
lost.

Disk Status

Status requests from the disk will return the
following words in the status record:

Word 1 - The number of bytes currently
buffered for the direction specified in the
CONTROL word, as described in the
section, "Console Status," above. If no
capability for checking is available, it
should be set to O.

0400101:04A 4-57

Low-Level I/O

Word 2 - The number of bytes per sector.

Word 3 - The number of sectors per
track.

Word 4 - The number of tracks per disk.

Remote

This unit is intended to be an RS-232 serial
line for supporting various types of
communication. It is important that it transfer
raw data without changing it in any way. All
eight bits of the transferred byte should be
considered significant. The transfer rate is
usually set to 9600 baud.

Remote Output Requirements

As noted above, all 8-bits of the data byte
should be transmitted. The remote BIOS
driver is sent one byte at a time.

Remote Input Requirements

Input from a remote device should be
buffered, if possible, by the scheme
suggested in "Type-Ahead" section. As noted
above, all eight data bits must be returned.

4-58 0400101:04A

Low-Level I/O

Remote Initialization and Control

Initialization of the remote device should
bring it to a state in which it is ready to
read or write.

Remote Status

The number of bytes buffered for the
direction specified in the CONTROL word
should be returned in the first status word,
as described in the "Console Status" section,
above. If no capability for checking is
available, it should return O.

User-Defined Devices

These devices are intended to allow you the
freedom to implement devices not specifically
defined in this document. The actual
implementation is left entirely to you. The
only requirement is that they return a
completion code when finished and, if the
UNITNUMBER isn't defined, that it return code
2 ("illegal unit number"). You should use
device numbers starting from 128 (see
"User-Defined Devices," above).

0400101:04A 4-59

Low-Level I/O

Special BIOS Calls

These functions are provided by the BIOS to
make configuration-specific functions accessible
to the PME. Although these functions aren't
related to I/O, they are put into the BIOS as the
repository for configuration-specific code.

As with all other routines in the BIOS, each
should return a completion code.

System Output

System Output is reserved for future expansion
and, at this time, should cause the system to
HALT. (Note that HALT may actually cause a
reboot on some (few) implementations.)

System Input

System Input is also reserved for future use,
and like System Output, should cause a HALT.

System Initialization and Control

The System Initialization and Control BIOS
routine should initialize such things as the
clock (reset it to 0) and the interrupt system,
if either is to be used.

4-60 0400101:04A

Low-Level I/O

System Status

The System Status BIOS routine should return
the following information in the status record:

Word 1 - The address of the last word in
accessible contiguous RAM memory; for
example, on an 8080 system with 64K bytes
of RAM, the last byte address may be
'FFFF', but the last word address is 'FFFE'.

Word 2 - The least significant part of the
32-bit word used by the system clock. If a
clock isn't present, then this must be set to
O.

Word 3 - The most significant part of the
32-bit word used by the system clock. If a
clock isn't present, then this must be set to
O.

NOTE: If a clock is used, the system assumes
that the two words returned are representative
of the time in 60ths of a second. It is the
clock driver's responsibility to maintain the
closest approximation to this time. The time is
defined to be 0 at clock initialization.
Currently, the CONTROL word is ignored.

0400101:04A 4-61

Low-Level I/O

BIOS CALLING CONVENTIONS

The following is a summary of the calling
conventions described earlier. The
processor-specific protocols for certain machines
are shown in the following section. All calls to
the BIOS return a completion code.

Entry Point

CONSOLEREAD
CONSOLEWRITE
CONSOLECTRL

CONSOLESTAT

PRINTERREAD
PRINTERWRITE
PRINTERCTRL
PRINTERSTAT

DISKREAD

DISKWRITE
DISKCTRL
DISKSTAT

REMOTEREAD
REMOTEWRITE
REMOTECTRL

4-62

Parameters

single data byte
single data byte
BREAK vector
SYSCOM pointer
STATREC pointer
CONTROL word
single data byte
single data byte
(none)
STATREC pointer
CONTROL word

block number
byte count
data area address
drive number
CONTROL word
(same as DISKREAD)
drive number
drive number
STATREC pointer
CONTROL word

single data byte
single data byte
(none)

0400101:04A

Low-Level I/O

REMOTESTAT STATREC pointer
CONTROL word

USERREAD block number
byte count
data area address
device number
CONTROL word

USERWRITE (same as USERREAD)
USERCTRL device number
USERSTAT device number

STATREC pointer
CONTROL word

SYSREAD block number
byte count
data area address
device number
CONTROL word

SYSWRITE (same as SYSREAD)
SYSCTRL device number

EVENT vector
SYSSTAT STATREC pointer

CONTROL word

QUIET (none)
ENABLE (none)

SERREAD device number
single data byte

SERWRITE device number
single data byte

SERCTRL device number
SERSTAT device number

STA TREC pointer
CONTROL word

0400101:04A 4-63

Low-Level I/O

PROCESSOR-SPECIFIC BIOS CALLS

8086/8088

Entry Points: All BIOS entry points are given as
positive offsets from the BIOS vector table. The
location of this vector table is given by the label
BIOSVC, which is defined with a .DEF in the
BIOS. Each entry in the vector table should be
a pointer to the routine that implements that
BIOS function. The pointer is relative to be
beginning of the PME.

Parameters: When parameters aren't being passed
in a specified register, they are pushed onto the
stack. Offsets from the address pointed to by
SP (indicated as (SP» are given. (Remember that
the stack grows down and that SP normally
points at the last word pushed on the stack.)

Completion Code: Return in register AR.

Calling Sequence: The RSP will use the CALL
BIOSVC(BX) (intrasegment, indirect) to call the
routine within the BIOS. The BIOS routines may
make free use of registers
AX,BX,CX,DX,BP,SI,DI, with the exception of
QUIET, ENABLE, and SYSTEMSTAT which may
only use AX,BX,CX,DI. Registers CS,DS,SS,ES
must be returned unchanged.

4-64 0400101:04A

DISKWRITE 12
DISKCTRL 14
DISKSTAT 16

REMOTERI::AD 18
REMOTEWRITI:: lA
REMOTI::CTRL lC
REMOTE:STAT IE

UsF.RREAD 20

Entry Point Offset (hex)

CONSOLERI::AD 00
CONSOLEWRITE 02
CONSOLECTRL 04

CONSOLESTAT 06

PRINTERREAD 08
PRINTERWRITE OA
PRINTERCTRL DC
PRINTERSTAT DE

DISKREAD 10

SYSWRITE 2A
SYSCTRL 2C

SYSSTAT 2E

QUIET 30
ENABLE 32

SERIALREAD 34

USI::RWRITF.
USERCTRL
[lSERSTAT

SYSH!::AD

0400101:04A

22
24
26

28

Low-Level I/O

Parameters

return data byte in AI.
write data byte in AI.
BREAK vector at (SP)+2, (SP)+3
SYSCOM pointer at (SP)+4, (SP)+5
STATREC pointer at (SP)+2, (SP)+3
CONTROL word at (SP)+4, (SP)+5

return data byte in AI.
write data byte in AI.
(none)

STATREC pointer at (SP)+2, (SP)+3
CONTROL word at (SP)+4, (SP)+5

block number at (SP)+2, (SP)+3
byte count at (SP)+4, (SP)+5
data area address at (sP) +6, (sP) +7
drive number at (SP)+8, (SP)+9
CONTROL word at (SP)+lO, (SP)+ll
data area segment in ES
(same as DISKREAD)
drive number in CL
drive number in CL
STATREC pointer at (SP) +2, (SP) +3
CONTROL word at (SP)+4, (SP)+5

return data byte in AI.
write data byte in AI.
(none)
STATREC pointer at (SP)+2, (SP)+3
CONTROL word at (SP)+4, (SP)+5

block number at (SP) +2, (SP) +3
byte count at (SP)+4, (SP)+5
data area address at (SP) +6, (SP) +7
device number at (SP) +8, (SPl+9
CONTROL word at (SP) +10, (SP) +11
data area segment in ES
(same as USERREAD)
device number in CL
device number in CL
STATREC pointer in (SP) +2, (SP) +3
CONTROL word in (SP) +4, (SP) +5

block number at (SP) +2, (SPJ+3
byte count at (SP) +4, (SP) +5
data area addr('ss at (SP) +6, (SPJ+7
drive number at (SP) +8, (SP) +9
CONTHOL word at (SP) tID, (SP) +11
data area segment i~ ES
(same as SYSREAD)
EVENT vector at (SP) +2, (SP) +3
device number in CL
device number in CL
STATREC pointer in (SP)+2, (SP)+3
CONTROL word in (SP)+4, (SP)+5

(none)
(none)

return data byte in AI.
device number in CL

4-65

Low-Level I/O

SERIALWRITE

SERIALCTRL
SERIALSTAT

4-66

36

38
3A

write data byte in AL
device number in CL
device number in CL
device number in CL
STATREC pointer in (SP)+2, (SP)+3
CONTROL word in (SP)+4, (SP)+5

0400101:04A

Low-Level I/O

SOSO/ZSO

Entry Points: All BIOS entry points are given as
positive offsets from the beginning of the BIOS
code space. These locations should contain a
JMP instruction to the appropriate address in the
BIOS.

Parameters: When parameters aren't being passed
in a specified register, they are pushed onto the
stack. Offsets from top-of-stack are given (the
stack grows down).

Completion Code: Return in register A.

Calling Sequence: The RSP will use the CALL
instruction to call the BIOS. Thus the return
address is at (SP),(SP)+1. All registers are
available for use by the BIOS. The BIOS should
clean off the stack before returning to the RSP.

Entry Point Offset(hex)

CONSOLEREAD 00
CONSOLEWRITE 0)
CONSOLECTRL 06

CONSOLESTAT 09

PRINTERREAD OC
PRINTERWRITE OF
PRINTERCTRL 12
PRINTERSTAT 15

DISKREAD 18

DISKWRITE IB
DISKCTRL IE

0400101:04A

Parameters

return data byte in Reg C
write data byte in Reg C
BREAK vector at (SP)+2,ISP)+)
SYSCOM pointer at (SP)+4, (SP)+5
STATREC pointer at (SP)+2, (SP)+)
CONTROL word at (SP)+4, (SP)+5

return data byte in Reg C
write data byte in Reg C
(none)

STATREC pointer at (SP)+2, (SP)+)
CONTROL word at (SP)+4, (SP)+5

block number at (SP)+2,(SP)+)
byte count at (SP) +4, (SP) +5
data area address at (SP)+6, (SP)+7
drive number at (SP)+8, (SP)+9
CONTROL word at (SP)+A, (SP)+B
(same as DISKREADJ
drive number in Reg C

4-67

Low-Level I/O

DISKSTAT

REMOTEREAD
REMOTEWRITE
REMOTECTRL
REMOTESTAT

USERREAD

USERWRITE
USERCTRL
USERSTAT

SYSREAD

SYSWRITE
SYSCTRL
SYSSTAT

QUIET
ENABLE

SER1ALREAD

SER1ALWRITE

SER1ALCTRL
SER1ALSTAT

4-68

21

24
27
2A
2D

30

33
36
39

3C

3F
42
45

48
4B

4E

51

54
57

drive number in Reg c
STATREC pointer at (SP)+2, (SP)+3
CONTROL word at (SP)+4, (SP)+5

return data byte in Reg C
write data byte in Reg C
(none)
STATREC pointer at (SP)+2, (SP)+3
CONTROL word at (SP)+4, (SP)+5

block number at (SP)+2, <SP)+3
byte count at (SP)+4,<SP)+S
data area address at (SP)+6, (SP)+7
device number at (SP)+8, (SP)+9
CONTROL word at (SP)+A,<SP)+B
(same as USERREAD)
device number in Reg C
device number in Reg C
STATREC pointer at (SP) +2, (SP) +3
CONTROL word at (SP)+4,(SP)+5

block number at (SP)+2, (SP)+3
byte count at (SP)+4, (SP)+5
data area address at (SP)+6, (SP)+7
device number at (SP) +8, (SP) +9
COm'ROL word at (SP) +A, (SP) +8
(same as SYSREAD)
EVENT vector at (SP)+2, (SP)+3
STATREC pointer at (SP) +2, (SP) +3
CONTROL wore] at (SP) +4, (SP) +5

(none)
(none)

return data byte in C
device number at (SP)+2, (SP)+3
write data byte in C
device number at (SP)+2, (SP)+3
device number at (SP)+2, (SP) +3
device number at (SP) +2, (SP) +3
STATREC pointer in (SP) +4, (SP) +5
CONTROL word in (SP)+6, (SP)+7

0400101:04A

Low-Level I/O

6502

Entry Points: All BIOS entry points are given as
positive offsets from the beginning of the BIOS
code space. These locations should contain a
JMP instruction to the appropriate address in
BIOS.

Parameters: When parameters aren't being passed
in a specified register, they are pushed onto the
stack. Offsets from the address pointed to by S
(indicated by (S» are given (the stack grows
down; and that S normally points to the fi~t

available address below valid data).

Completion Code: Return in register X.

Calling Sequence: The RSP will use the JSR
instruction to call the BIOS. Thus the return
address is at (S)+l, (S)+2. All registers are
available for use. The stack should be cleaned
off by the BIOS before returning to the RSP.

Entry Point

CON50LEREAD
CON50LEWRITE
CON50LECTRL

CON50LE5TAT

PRINTERREAD
PRINTERWRITE
PRINTERCTRL
PRINTER5TAT

DI5KREJI.D

0400101:04A

Offset (hex) Paran,eters

00 return data byte in Reg A
03 write data byte in Reg A
06 BREAK vector at (5)+3,(5)+4

5Y5COM pointer at (5)+5, (5)+6
09 5TATREC pointer at (5)+3, (5)+4

CONTROL word at (5)+5,(5)+6

OC return data byte in Reg A
OF write data byte in Reg A
12 (none)
15 5TATREC pointer at (5)+3,(5)+4

CONTROL word at (5)+5, (5)+6

18 block number at (5)+3,(5)+4
byte count at (5)+5, (51+6
data area address at (5)+7, (51+8
drive number at (5)+9, (5)+A
CONTROL word at (5)+B, (5)+C

4-69

Low-Level I/O

DISKWRITE
DISKCTRL
DISKSTAT

REMDTEREAD
REMOTEWRITE
REM01'FCTRL
REMOTESTAT

USERREAD

USERWRITE
USERCTRL
USERSTAT

SYSREAD

SYSWRlTE:
SYSCTRL

SYSSTAT

QUIET
ENABLE

SERIALREAD

SERIALWRITE

SERIALCTRL
SERIALSTAT

4-70

IB
IE
21

24
27
2A
2D

30

33
36
39

3C

3F
42

45

48
4B

4E

51

54
57

(same as DISKREAD)
drive number in Reg A
drive number in Reg A
STATREC pointer at (S)+3, (S)+4
CONTROL word at (S)+5,(S)+6

return data byte in Reg A
write data byte in Reg A
(none)
STATREC pointer at (S)+3, (S)+4
CONTROL word at (S)+5, (S)+6

block number at (S)+3, (S)+4
byte count at (S)+5, (S)+6
data area address at (S)+7, (S)+8
device number at (S)+9,(S)+A
CONTROL word at (S)+B, (S)+C
(same as USERREAD)
device number in Reg A
device number in Reg ~

STATREC pointer at (S)+3, (S)+4
CONTROL word at (S)+5, (S)+6

block number at (S)+3, (S)+4
byte count at (S)+5, (S)+6
data area address at (S)+7, (S)+8
device number at (S)+9, (S'+A
CONTROL word at (S) +B, (S) +C
(same as SYSREAD)
device number in A
EVENT vector at (S) +3. (S) +4
device number in A
STATREC pointer in (S)+3, (S)+4
CONTROL word in (SI+5, (S1+6

(none)
(none)

return data byte in A
device number in Y
write data byte in A
device number in Y
device number in A
device number in A
STATREC pointer in (S)+3, (S)+4
CONTROL word in (S)+5, (S)+6

0400101:04A

Low-Level I/O

6809

Entry Points: All BIOS entry points are given as
positive offsets from the beginning of the BIOS
code space. These locations should contain a
vector to the appropriate address in the BIOS.

Parameters: When parameters aren't being passed
in a specified register, they are pushed onto the
stack. Offsets from the address pointed to by
SP (indicated by (SP» are given (the stack grows
down; and that SP normally points at the last
item pushed on the stack).

Completion Code: Return in register B.

Calling Sequence: The RSP will use the JSR
instruction to call the BIOS. Thus, the return
address will be at (SP)+O, (SP)+l. The U and Y
registers contain PME information which must be
preserved/restored by the BIOS prior to returning
to the RSP. All other registers are available for
use. The stack should be cleaned off by the
BIOS before returning to the RSP.

Entry Point

CONSOLEREAD
CONSOLEWRITE
CONSOLECTRL

CONSOLESTAT

0400101:04A

Offset(hex) Parameters

00 return data byte in Reg A
03 write data byte in Reg A
06 BREAK vector at (SP)+2. (SP)+]

SYSCOM pointer at (SP)+4. (SP)+5
09 STATREC pointer at (SP)+2. (SP)+]

CONTROL word at (SP)+4,(SP)+5

4-71

Low-Level I/O

PRINTERREAD
PRINTERWRITE
PRINTERCTRL
PRINTERSTAT

DISKREAD

DISKWRITE
DISKCTRL
DISKSTAT

REMOTEREAD
REMOTEWRITE
REMOTECTRL
REMOTESTAT

USERREAD

USERWRITE
USERCTRL
USERSTAT

SYSREAD

SYSWRITE
SYSCTRL

SYSSTAT

QUIET
ENABLE

SERIALREAD

SERIALWRITE

SERIALCTRL
SERIALSTAT

4-72

OC
OF
12
15

18

IB
IE
21

24
27
2A
2D

30

33
36
39

3C

3F
42

45

48
4B

4E

51

54
57

return data byte in Reg A
write data byte in Reg II
(none)
STATREC pointer at (SP)+2, (SP)+3
CONTROL word at (SP)+4, (SP)+5

block number at (SP)+2,(SP)+3
byte count at (SP)+4.(SP)+5
data area address at (SP)+6.(SP)+7
drive number at (SP)+8, (SP)+9
CONTROL word at (SP)+A, (SP)+B
(same as DISKREAD)
drive number in Reg A
drive number in Reg A
STATREC pointer at (SP)+2, (SP)+3
CONTROL word at (SP)+4, (SP)+5

return data byte in Reg A
write data byte in Reg II
(none)
STATREC pointer at (SP)+2, (SP)+3
CONTROL word at (SP)+4. (SP)+5

block number at (SP)+2. (SP)+3
byte count at (SP)+4. (SP)+5
data area address at (SP)+6. (SP)+7
device number at (SP)+8. (SP)+9
CONTROL word at (SP)+II, (SP)+B
(same as USERREAD)
device number in Reg II
device number in Reg II
STATREC pointer at (SP)+2,(SP)+3
CONTROL word at (SP)+4, (SP)+5

block number at (SP)+2. (SP)+3
byte count at (SP)+4,(SP)+5
data area address at (SP)+6. (SP)+7
device number at (SP)+8.(SP)+9
CONTROL word at (SP)+A, (SP)+B
(same as SYSREAD)
device number in A
EVENT vector at (SP)+2. (SP)+3
device number in A
STATREC pointer at (SP)+2. (SP)+3
CONTROL word at (SP)+4. (SP)+5

(none)
(none)

return data byte in A
device number at (SP)+2, (SP)+3
write data byte in A
device number at (SP)+2, (SP)+3
device number at (SP)+2, (SP)+3
device number at A
STATREC pointer in (SP)+2, (SP)+3
CONTROL word in (SP)+4. (SP)+5

0400101:04A

Low-Level I/O

68000

Entry Points: All BIOS entry points are given as
positive offsets from the BIOS jump table. The
location of this jump table is given by the label
BIOSVC which is defined with a .DEF in the
BIOS. Each entry in the jump table should be a
long BRAnch to the routine that implements that
BIOS function.

Parameters: In general, parameters are passed to
the BIOS using the following register scheme:

00.0 - character
01.6 - result code
02.W - control
03.W - block number
04.W - bytes
05.6 - unit number

AO - free
Al - free
A2 - buffer address

Completion Code: Returned in register Dl.B.

Calling Sequence: The RSP will use the JSR
instruction to call into the jump table within the
BIOS. The BIOS routines may make free use of
registers DO,Dl,AO,Al. No other registers
(including the parameter registers) may be
destroyed.

0400101:04A 4-73

Low-Level I/O

Entry Point Offset (hex) Parameters

CONSOLEREAD 00 return data byte in DO.B
CONSOLEWRITE 04 write data byte in DO.B
CONSO'JECTRL 08 SYSCOM pointer in AO

BREAK vector in AI
CONSOLESTAT OC STATREC pointer in A2

CONTROL word in D2.W

PRINTERREAD 10 return data byte in DO.B
PRINTERWRITE 14 wr ite oata byte in DO.B
PRINTERCTRL 18 (none)
PRINTERSTAT lC STATREC pointer in A

CONTROL word in D2.W

DISKREAD 20 block number in D3.W
byte count in D4.W
data area address in A2
drive number in D5.B
CONTROL word in D2.W

DISKWRITE 24 (same as DISKREAD)
DISKCTRL 28 dr ive number in D5.B
DISKSTAT 2C drive number in D5.B

STATREC pointer in A2
CONTROL word in D2.W

REMOTf:READ 30 return data byte in DO.B
REMOTEWRITE 34 write data byte in DO.B
REMOTECTRL 38 (none)
REMOTESTAT 3C STATREC pointer in A2

CONTROL word in D2.W

USERREAD 40 block number in D3.W
byte count in D4.W
data area address in A2
device number in D5.B
CONTROL word in D2.W

USERWRITE 44 (same as USERREAD)
USERCTRL 48 device number in D5.B
USERSTAT 4C device number in D5.R

STATREC pointer in A2
CONTROL word in D2.W

SYSRE..D 50 block number in D3.W
byte count in D4.W
data area address in A2
device number in D5.R
CONTROL word in D2.W

SYSWRITE 54 (same as SYSREAD)
SYSCTRL 58 device number in D5.B

EVENT vector in AO
SYSSTAT 5C device number in D5.B

STATREC pointer in A2
CON'l'ROL word in D2.W

QUIET 60 (none)
ENABLE 64 (none)

Sf:RIALREAD 68 return data byte in DO.B
device number in D5.R

SERIALWRITE 6C write data byte in DO.R
device number in D5.B

SERIALCTRL 70 device number in D5.B

4-74 0400101:04A

SERIALSTAT

040010l:04A

74

Low-Level I/O

device number in CS.B
STATREC pointer in A2
CONTROL word in D2.W

4-75

Operating
System

CHAPTER 5

THE OPERATING

SYSTEM

The Operating System

OVERVIEW OF THE OS

The operating system is a collection of Pascal
UNITs. The organization of UNITs in the operating
system was determined by three considerations:
functional grouping, space and language restrictions,
and necessary code-sharing with other portions of
the system. Some UNITs (such as SCREENOPS) are
intended to be accessible to your programs as well.
The name of a UNIT in the operating system
generally reflects its function. This is a full list
of operating system UNITs:

~~ Function

HEAPOPS Heap operators
EXTRAHEAP
PERMHEAP

SCREENOPS Screen control

FILEOPS File and directory operations

PASCALIO File-level 1/0
EXTRAIO
SOFTOPS

SMALLCOMMAND 1/0 redirection and chaining
COMMANDIO

STRINGOPS String intrinsics

OSUTIL Conversion utilities

CONCURRENCY Concurrency

REALOPS Floating point functions and real number 1/0

LONGOPS Long integer operations

GOTOXY Screen cursor control (may be user-supplied)

KERNEL Nonswappable central facilities of op. system
(always resident in main memory)

GETCMD Subsidiary segments of KERNEL
USERPROG (swappable)
INITIALIZE
PRINTERROR

0400101:05A 5-3

The Operating System

KERNEL contains the resident code necessary to
maintain the code pool, handle faults, and read
segments. The Kernel also contains four subsidiary
segments, which are swappable:

GETCMD processes your input at
command level, and builds your
run-time environment;

the main
program's

USERPROG is the reserved segment slot for your
program (at bootstrap time it contains the
Pascal-level code which builds the initial
run-time environment for the operating system);

INITIALIZE is called when the system is booted
or reinitialized. It reads SYSTEM.MISCINFO,
locates the system code files, and sets up the
table of devices;

PRINTERROR prints run-time error messages.

The operating system UNITs are compiled
separately. They are bound together in a single
code file, SYSTEM.PASCAL, by using the utility
LIBRARY.

Because of certain bootstrap restrictions, KERNEL
must always reside in segment-slot 0 and
USERPROG must always reside in slot 15. There
are no other restrictions on the location of units
within SYSTEM.PASCAL.

5-4 0400101:05A

The Operating System

P-MACBINE SUPPORT

The Heap: An Overview

The heap is an area in low memory used for the
allocation of dynamically stored variables. The
upper bound of the heap depends upon the size
of the stack (and the code pool if it is interna!).
The area between the heap and its upper bound
is provisionally available to the heap: stack
faults and segment faults may change the size of
this area. Heap faults are used by the heap
operators to request that more space be allocated
to the heap.

The heap is manipulated by a number of intrinsic
routines that allocate or deallocate heap space in
a particular way. These routines are described
below.

MARK and RELEASE

MARK saves the location of the current top of
the heap. RELEASE cuts the heap back to the
location of the corresponding mark. Variables
which were allocated between the time of the
MARK and the time of the RELEASE are
removed from the heap, except for variables
allocated by PERMNEW. MARK and RELEASE
may be nested; the integrity of the heap
requires that they be correctly paired.

0400101:05A 5-5

The Operating System

NEW and VARNEW

NEW and VARNEW cause variables to be
allocated on the heap above the topmost mark.
NEW(P), where variable P is a pointer to type
T, causes the number of words in type T to be
allocated. P is assigned the address of the
first location e.llocated to P on the heap. If T
is a record with variants, space for the largest
variant is allocated. In Pascal, a call to NEW
may designate a particular variant, so that
space for this particular variant is allocated
(which may be less than the largest variant in
that record).

VARNEW(P,NWords), where P is a pointer to
type T, causes NWords to be allocated on the
heap. T would most commonly be an array.
NWords (indirectly) determines how many
elements of the array are actually available in
this instance. P returns the address of the
first location allocated on the heap.

VARNEW is a function, and returns the number
of words that actually were allocated. This
should equal NWords; if it is 0, then there was
less than NWords of available space, and if it
is some other number, something went wrong.

5-6 0400101:05A

The Operating System

DISPOSE and VARDISPOSE

DISPOSE and VARDISPOSE de-allocate space
reserved by NEW and VARNEW, respectively.
DISPOSE(P) frees the number of words pointed
to by P. VARDISPOSE(P,NWords) frees NWords
words. In both cases, P is assigned the value
NIL.

To avoid destroying important information that
is on the heap, extreme caution should be used
with these intrinsics, which do little
error-checking of their own. Heap space
allocated by a VARNEW should be freed only
by a VARDISPOSE with the same NWords
parameter, and MARK/RELEASE pairs should
always match. Furthermore, if the NEW is
called for a specific variant, the same variant
should be used to DISPOSE that area::--

If these intrinsics are misused, the system is
likely to crash. This is the least mysterious of
the symptoms that may occur.

PERMNEW and PERMDISPOSE

A variable can be allocated on the heap by
PERMNEW(P), where P is a pointer to the
variable's type. A variable allocated by
PERM NEW can only be deallocated by
PERMDISPOSE(P). Even a RELEASE can't
remove it. These routines are meant for the
system's use, not yours.

0400101:05A 5-7

The Operating System

The operating system uses these routines to
allow variables to remain defined across
MARK/RELEASE pairs. Program CHAIN
commands are saved on the heap with
PERMNEW, so that even after the chaining
program terminates, and its heap space is
released, these commands are still available to
determine the further actions of the system.

Heap Implementation

Unit Organization

Code for the heap operators is contained in
three units: HEAPOPS, EXTRAHEAP, and
PERMHEAP. HEAPOPS contains MARK,
RELEASE, and NEW. EXTRAHEAP contains
DISPOSE, VARNEW, VARAVAIL, MEMLOCK,
and MEMSWAP. PERM HEAP contains
PERMNEW, PERMDISPOSE, and PERMRELEASE.
(VARAVAIL, MEMLOCK, and MEMSWAP are for
segment management and are discussed
elsewhere.)

5-8 040010l:05A

The Operating System

Heap Globals

The operating system uses several variables
to manage the heap. The heap is maintained
by a linked list of MARKs. The topmost
MARK is indicated by HeapInfo.TopMark. A
MARK (also called an HMR, for heap mark
record) has the following structure:

TYPE
MemLink = RECORD

Avail_list: MemPtr;
NWords: integer;
CASE Boolean OF

true: (Last_Avail,
Prev_Mark: MemPtr);

END;

In a MARK, NWords is always 0, and the
variant is always TRUE. NWords is 0
because the MARK merely marks a location
on the heap, and doesn't reserve any space.

Each MARK points to an Avail List, which is
a list of records of type MemLink. These
records are FALSE variants of MemLink, and
NWords contains the number of words of
available space (including the two words of
the record itself). The Avail List chain is
ended by an Avail_List of NIL.-

The first MARK on the heap contains a
Prev Mark of NIL. All successive MARKs
point- back to their predecessor, so that the
MARK chain can be tra.versed.

0400101:05A 5-9

The Operating System

For each MARK, the first Avail List record
is the lowest unallocated space- above the
MARK. Last Avail points to the last of the
available space. This is typically bounded by
allocated heap space or by another MARK; if
the MARK is TopMark, Last_Avail is bounded
by the code pool if the pool is internal or
by the stack if the pool is external.

The heap maintenance variables have the
following structure:

VAR
Heaplnfo: RECORD

Lock: semaphore:
TopMark,
HeapTop: MemPtr:

END:
PermList: MernPtr;

The Lock semaphore guarantees that the
heap is modified by only one process at a
time. TopMark points to the highest MARK.
HeapTop points to the highest allocated
space on the heap. The Faulthandler uses
HeapTop to determine t,ow close the code
pool or the stack can be to the heap. A
base value is computed which is either the
base of the code pool (if internal) or SP Low
(if the pOol is external). PermList points to
a linked list of PERMNEW'ed variables. The
list is identical in structure to an Avail List,
but each NWords indicates the numt>er of
words allocated by a PERMNEW. If PermList
is NIL, then no variables have been
PERMNEW'ed.

5-10 0400101:05A

The Operating System

Tactics

In general, a request for heap space through
a MARK, NEW, VARNEW, or PERMNEW
causes HeapTop to be set to the new top of
the heap. The fault handler always places
the code pool (located at PoolBase) above
HeapTop if the pool is internal. If the pool
is external, the stack and heap are allowed
to grow toward each other. If they meet, a
stack overflow condition exists. Thus,
HeapTop reserves space for the heap as soon
as a heap operator requests it. This is
necessary because of possible interactions
between stack fault handling and heap space
allocation.

The operating system uses the global variable
SysCom'"' .GDirP (global directory pointer) to
allocate a disk directory on the heap. The
operating system's use of this heap space is
meant to be invisible to you. Therefore,
before any heap operation (except DISPOSE),
SYSCOM'"' .GDirP is DISPOSEed to make the
space occupied by the directory available
again.

0400101:05A 5-11

The Operating System

Run-Time Environment

Since both you and the operating system use
the heap, the operating system MARK's the
heap immediately before the execution of your
program by the call:

MARK (EMPTYHEAP);

After your program terminates, the operating
system calls:

RELEASE (EMPTYHEAP);

Thus, all your space is freed after the program
terminates, unless space has been allocated by
one or more calls to PERMNEW.

MARK (EMPTYHEAP) occurs after the run-time
environment for your program has been built.
The program's run-time environment structures
such as SIBs, E_Rec's, and E_Vect's, are for
the use of the operating system, and are
allocated space before EMPTYHEAP. Data
that is global to your program and any units it
USES also appears before EMPTYHEAP. Heap
space that follows EMPTYHEAP is intended
only for the local use of your program.

The heap is shared by all tasks in the system.

5-12 0400101: 05A

The Operating System

THE CODE POOL

The code pool resides in main memory between the
stack and the heap. It contains executable code
segments that may possibly be discarded, or
swapped in from disk again. Thus, the contents,
size, and position of the code pool may change
during a program's execution. The flexibility of
code pool handling can provide a running program
with more free memory space than in previous
versions.

A segment in the code pool
or relocatable native code.
code segments reside on the
there at associate time.

must be either p-code
Nonrelocatable native

heap; they are placed

The code pool is a contiguous block of code
segments-whenever a segment is discarded, the
surrounding segments are moved together. Segments
being swapped in are given space at either end of
the code pool.

Segments in the code pool are organized into a
doubly-linked list by pointers in each segment's SIB
(described in the previous chapter).

0400101:05A 5-13

The Operating System

The routines that manage the code pool are in the
operating system's KERNEL unit. They make use
of the following global values:

SegPool: "'PooIDes; This field
SIB. It
description
pool, which
follows:

is within the
points to a
of the code
is declared as

Pooldes = Fecord
poolBase
PoolSize
MinOffset
MaxOffset
Resolution
Pool Head
Perm_SIB
Extended

End;

: fulladdress;
: integer:
: memptr;
: memptr;

interger; (in bytes)
SIB_P;
SIB_P;
boolean:

PoolBase: FUll_Address; Points to the memory
location at the base of
the code pool. (A
Full Address is a 32-bit
address.)

PoolSize: Integer; The size of the code pool
in words. Set by the
SETUP utility.

MinOffset: Integer; Lower boundary of code
pool.

MaxOffset: Integer; Upper boundary of code
pool.

5-14 0400101:05A

Resolution: Integer;

Extended: Boolean;

0400101:05A

The Operating System

A segment must be placed
in memory starting ,at a
location which has an
address that is a multiple
of this number. This is
set by the SEGMENT
ALIGNMENT field in
SYSTEM.MISCINFO
(determined by the SETUP
utility).

Points to the SIB of the
segment at the base of
the code pool (next to
the heap).

Points to the SIB of the
segment that is always
resident in the code pool
(currently, GOTOXY).

True if extended memory
is used; false, otherwise.
Set from the HAS
EXTENDED MEMORY
fie I din
SYSTEM.MISCINFO
(determined by the SETUP
utility).

The lowest possible bound
of the stack; this points
to the address which is
one word above the top
of the code pool (if it is
interna!). SP Low is in
the TIB. -

5-15

The Operating System

HeapTop: Mem_ptr; Points to the top of the
heap. HeapTop is part of
the HeapInfo record.

If the code pool is internal when space is requested
either for the heap or the stack, the code pool
management routines first attempt to reposition the
code pool without swapping out any segments.

The actual bounds of the code pool are in
MinOffset, which points to the low end of the code
pool, and MaxOffset, which points to one word
above the top of the code pool. The code pool
operators may move the pool all the way to
HeapTop on the heap side, or up to SP minus a
40-word margin on the stack side (if the pool is
internal). MaxOffset is the same as SP Low for an
internal pool.

An internal code pool may be modified under any
of the following circumstances:

1. A heap fault is detected, and the code pool is
moved up in memory toward the stack to free
the needed number of words for the heap.

2. A stack fault is detected, and the code pool is
moved down in memory toward the heap to free
the needed number of words for the stack.

5-16 0400101:05A

The Operating System

3. A heap fault or stack fault is detected, and the
code pool can't be moved to allocate the space;
one or more segments are swapped out, the
remaining segments are moved together, and the
code pool is positioned to allow for the needed
heap or stack space.

4. A heap or stack fault is detected, and even
after swappping out all of the swappable
segments, not enough space is available; a stack
overflow error is reported, and the system is
reinitialized.

An internal or external code pool may be modified
when a segment fault is detected. The code pool
management routines first try to read the segment
in at either end of the code pool without moving
it. If this is impossible, and the pool is internal,
they attempt to create more room by moving the
code pool toward either the stack or the heap, and
then read the segment. If this too is impossible, or
the pool is external, segments are swapped out to
make room, and the new segment is then read in.
If this last effort also fails, a stack overflow error
is reported if the pool is internal or a pool
overflow error is reported if the pool is external.
The system is reinitialized.

The code pool management routines are only called
by the Faulthandler. Since the Faulthandler is a
subsidiary task, its own stack is statically
allocated. Thus, the Faulthandler can manipulate
the code pool freely, without fear of causing a
stack fault.

0400101:05A 5-17

The Operating System

Fault Handling

When memory space is required by the stack or
heap, or entry into a nonresident segment is
attempted, a fault is issued. The Faulthandler
process is activated, and uses the code pool
management routines to rearrange main memory
(as described in the previous section).

The Faulthandler is a process that is STARTed at
bootstrap time. Most of the time it is idle, it
WAITs for a semaphore. When the semaphore is
SIGNALed, the Faulthandler is activated and
performs its memory management functions.

Faults can be SIGNALed by
segment faults), or by
procedure in the operating
and one segment fault).

the PME (stack and
the EXECERROR
system (heap faults

The semaphore record used by the Faulthandler
resides in SYSCOM. It is declared as follows:

Fault_Message = RECORD
Fault_TIB: TIB_ptr;
Fault_E_Rec: E_Rec_ptr;
Fault_Words: integer;
Fault_Type: Seg_Fault •• Pool_Fault;

END;

Fault_Sem: RECORD
Real_Sem, Message_Sem: semaphore;
Message: Fault_Message;

END;

5-18 0400101:05A

The Operating System

The PME detects only stack and segment faults.
When the PME detects a fault, it places the
appropriate information in Fault_Sem.Message and
SIGNALs Fault Sem.Message Sem. The SIGNAL
causes a task switch to the -Faulthandler, and the
fault is processed. After it has dealt with the
code pool, Faulthandler WAITs-this causes a task
switch back to the previously running process.
The instruction that caused the fault is
reexecuted.

The operating system issues heap faults, and in
one instance, a segment fault. Heap faults are
detected by the heap operators when requests are
made for heap space by MARK, NEW, VARNEW,
and PERMNEW• The one segment fault is issued
by MEMLOCK if a segment to be locked in the
code pool isn't already resident. To issue a
fault, the operating system calls the execution
error procedure (EXECERROR), and passes it the
needed information. EXECERROR then performs
a SIGNAL on Message_Sem.

The Faulthandler first ensures that the currently
running segment isn't swapped out, and then uses
the code pool management routines to adjust the
main memory layout.

If a stack fault is caused by a call to a routine
in a different segment, Faulthandler must lock
both calling and called segments into memory.

0400101:05A 5-19

The Operating System

Concurrency

Operating system routines support concurrency
only by the activation and deactivation of
processes; actual task switching is accomplished
by the p-machine operations SIGNAL and WAIT.

Concurrency support is intended for low-level
tasks. Most system-level facilities, particularly
I/O, are synchronous. For instance, a READ or
UNITREAD from the console doesn't return to
the caller until a character is available. No task
switch can occur during the waiting period.

The operating system global variable Task_Info is
used to keep track of some of the data for
SUbsidiary processes. Its structure is as follows:

Task_Info: RECORD
Lock,
Task_Done: semaphore;
N_Tasks: integer;

END {of Task_Info}:

Task Info.Lock is used to ensure mutual exclusion
while- changing the values of other Task Info
fields. Task Done is used to WArT for- the
termination of any SUbsidiary processes. N_Tasks
is the number of SUbsidiary tasks that have been
STARTed.

5-20 0400101:05A

The Operating System

The unit CONCURRENCY has three routines:
START, STOP, and BLK EXIT. For each process
initiation, the compiler -emits initialization code
that signals the semaphore passed to START.
The compiler also emits a call to STOP in the
exit code of each process; a call to BLK EXIT is
part of the exit code of a main process. -

START builds the data structures for a new task
and sets it in execution. The task's TIB,
activation record, and stack space are allocated
on the heap, and the operating system forces a
task switch by issuing aWAIT. Presumably, the
new process starts executing, and switches back
to START by doing a SIGNAL after its
parameters have been copied. Actually, when
START performs the WAIT, it is the process with
the highest priority that begins executing.

STOP records the termination of a process. It
decrements Task Info.N Tasks, SIGN ALs
Task Info.Task Done,- and then initializes and
waits for a dummy semaphore in order to force a
permanent task switch from the terminating
process.

BLK EXIT is called by a main task, and waits
for the termination of all sUbsidiary tasks. It
waits on Task Done, and terminates the main
task when N Tasks equals zero.

0400101:05A 5-21

The Operating System

I/O SUPPORT

FIBs

File I/O is controlled with a structure called a
FIB (File Information Block). When you declare a
file, the compiler emits code to initialize a FIB
for that file. A FIB is declared as follows:

FIB = RECORD
FWindow: Window_P;
FEOF, FEOLM: Boolean;
FState: IFJandW, FNeedChar, FGotChar);
FRecSize: integer;
FLock: semaphore;
C~SE fIsOpen: Boolean Of

true: (FIsBlkd: Boolean;
FUNIT:Ul<iITNUM;
FVID:VID:
FReptCnt,
FNxtBlk,
FMaxBlk: integer;
FModified: Boolean;
FHeader: DirEntry;
C~SE FSoftBuf: Boolean OF

true: (FNxtByte, FMaxByte: integer;
FBufChngd: Boolean;
FBuffer: PACKED ARRAY rO •• FBlkSizeJ

OF CHAR»
END [of FlF1}

FWindow points to the current character in the
filels buffer. FEOF and FEOLN are the EOF
and EOLN flags. FState indicates that the file
is either a standard (Jensen and Wirth) file, an
INTERACTIVE file awaiting a character, or an
INTERACTIVE file with a character. FRecSize
is 0 for unentered files, 1 for INTERACTIVE
files and text files; if it is larger than zero, it
indicates the size (in bytes) of a record. FLock
is used to ensure that only one process at a time
may modify the file. FIsOpen is TRUE only
when the file is open.

5-22 0400101:05A

The Operating System

If FIsOpen is TRUE, then several other fields
become relevant. FIsBlkd is TRUE if the file
resides on a storage device. FDev is the number
of that device, and FVolID is the name of the
volume. FReptCnt contains a count of the
number of times the window value is valid before
another GET is needed. FNxtBlk is the next
(relative) block to access. FMaxBlk is the
maximum (relative) block that can be accessed.
FModified becomes TRUE if the file is modified;
a new date is then set in the directory.
FHeader is a copy of the file's directory entry.
FSoftBuf is TRUE if soft-buffered I/O is used.
This is the case for all files on storage device,
except unentered files.

If FSoftBuf is TRUE, then the last set of FIB
fields are used. FNxtByte and FMaxByte are
used for buffer handling, FBufChngd indicates
that the buffer contents have been modified, and
FBuffer is the buffer itself.

0400101:05A 5-23

The Operating System

Directories

Figure 5-1 illustrates the structure of a directory
(as on a disk or other storage device).

DIRENTRY RECORD (0)
for dfkind=securedir untyped file (dir[O])

dfirstblk
dlastblk
filler 1 I dfkind
length (71 1

2 3
4 5
6 7

deovblk
dnumfiles

dloadtime

(year) I (day) I (month) Idlastboot

DIRENTRY RECORD (1-77)

status
bit

dt

dfirstblk
dlastblk
I filler_2 I dfkind,

length (15) 1
2 3
4 5

id
6 7
8 9
10 11
12 13
14 15

dlastbyte
(year) (day (month) Idaccess

DIRECTORY: array [0..771 of direntry;

B eee G
Figure 5-1. Directory Format

5-24 0400101:05A

The Operating System

VARIETIES OF I/O

Record I/O

Record I/O applies to entered Pascal files, using
the intrinsics GET and PUT.

Screen I/O

Screen I/O may be handled by the unit
SCREENOPS, whose routines are described in the
following section.

Input from the screen is accomplished by the
procedure CHAR DEV GET, which uses
SC CHECK CHAR - (in - SCREENOPS) and
SYSCOM".MisCINFO to determine whether any
special handling needs to be done.

Output to the screen is accomplished by a simple
UNITWRITE.

Block I/O

Block I/O applies to unentered files. The
routines BLOCKREAD and BLOCKWRITE are
used. These are part of the system routine
FBLOCKIO in the EXTRAIO unit.

When a file is accessed as an unentered file, all
other file formatting is disabled.

0400101:05A 5-25

The Operating System

Text I/O

A text file is a file of ASCII characters. It has
a 2-block header that contains formatting
information used by the Screen Oriented Editor.
When a text file is used by a system program
other than the editor, the operating system
ignores this header. When a new text file is
created, the operating system writes a 2-block
header filled with NULs. When SofTech's
internal part number is added to a text file, it is
stored in the last two words of the header (end
of block 1).

Text files always have an even number of blocks.
Thus, the smallest possible text file is four
blocks long. Each pair of blocks after the
header is considered as a "page." Each page
contains lines of text terminated by <return>.
The last line of text in a page must not be
continued on the next page in the text file.
Extra space after the last line in each page must
be filled with NULs (decimal 0).

Each line in a text file may optionally start with
a DLE (decimal 16), which is interpreted as a
blank compression code. The byte following a
blank compression code is ASCII code 32+n,
where n is the number of leading blanks. This
blank compression code is generated by the editor
(chiefly for the purpose of saving space in
indented program source).

5-26 0400101:05A

The Operating System

Your programs typically handle text files with
READ, READLN, WRITE, and WRITELN. GET
and PUT may be used, and follow the Jensen and
Wirth standard for files of type TEXT.

0400101:05A 5-27

Program
Execution

,...o
ID;;
a
III
>c
ID

"C
:---------------::r.o

::J

CHAPTER

PROGRAM

6

EXECUTION

~~~~----~---_.-_.--





Program Execution

BUILDING A RUN-TIME ENVIRONMENT

The run-time environment for your program is
created by the operating system's GETCMD unit.
GETCMD starts the execution of system programs
such as the compiler, linker, filer, and so on, and
your programs named in the' X(ecute command. In
all such cases, GETCMD calls the procedure
ASSOCIATE, which finds the appropriate code file,
and then calls BUILDENV. BUILDENV constructs a
program's run-time environment, as outlined in
Chapter 3, liThe P-Machine."

BUILDENV recursively traverses the segments used
by a program. For each segment, it initializes an
E Vect, E Rec, and SIB. As each E Rec is
created, iC is linked to a chain of segments that
are already active. In this way, the operating
system can keep track of all active segments.
Before BUILDENV initializes segment information, it
checks to see if that segment is already active,
and if it is, it does nothing but initialize the
proper pointers. Otherwise, the E Vect, E Rec,
and SIB must be created from information present
in the code file.

0400101:06A 6-3



Program Execution

SEG REFs are segment reference assignments
emitted by the compiler. Segment numbers are
local to a code segment. The main program is
segment 2, and sUbsidiary segments, if any, are
numbered starting from 3. Segment 1 is always the
operating system's KERNEL unit. SEGREFs are
emitted for any principal segments used by the
compilation (such as a used unit). At associate
time, BUILDENV uses the SEGREF list to find the
segments that the program uses.

All run-time errors detected by the system cause
the current program to halt. The system displays
an error message, and when you press <space>, the
system is reinitialized. The program's run-time
environment is lost.

When a program terminates, control returns to
GETCMD, which waits for further instructions.
When a program terminates normally, its
environment is not lost, and the program can be
restarted with the U(ser restart command. The
system mayor may not need to call BUILDENV
again.

6-4 0400101:06A



Program Execution

QUICKSTARTING PROGRAMS

The QUICKSTART utility (described in the
Operating System Reference Manual) constructs a
description of the execution environment for a
program and generates a code file for the program
which contains this execution environment
description. The GETCMD unit detects the
presence of execution environment descriptions
within code files and attempts to reconstruct the
required execution environment from such
descriptions when the programs are invoked. In
this section, an execution environment description
built by the QUICKSTART utility is called a
"Program Environment Descriptor" or "PED" for
short.

0400101:06A 6-5



Program Execution

Program Invocation Overview

When the execution of a program is requested,
the system first inspects the code file to
determine if an execution environment description
is present within it. If such a description is
present, the system attempts to reconstruct the
execution environment required by the program
from the description in the code file. If the
code file doesn't contain an environment
description, or the environment description
contained within the code file is determined to
be obsolete, the system attempts to build the
environment for the program in the normal
manner.

The program invocation process begins with an
attempt at opening the code file. If the code
file is sucessfully located, and the file is judged
to be a code file (based on directory
information), then the segment dictionary is read
from block zero. Within the segment dictionary
are two fields which indicate the presence, size,
and location of an imbedded PED. (See
description of the segment dictionary structure in
the next section.)

6-6 0400101:06A



Program Execution

If the PED_BLK field of the segment dictionary
isn't zero, a PED exists within the code file, and
an attempt is made to reconstruct the execution
environment for the program using the
information stored in the PED. If this
reconstruction of the execution environment fails,
the system automatically attempts to construct
the program's execution environment using the
normal execution environment construction
process. When the PED BLK word contains zero,
the normal execution environment construction
process is used.

A PED completely describes the execution
environment required by a program. A detailed
description of the structure of a PED is give in
the "PED Structure" section, below.

A PED contains a list of p-System operating
system units which are referenced by the
program. Each of these referenced operating
system units must be present within the system
environment in which the program is being
invoked. The execution environments for these
operating system units are created by the
p-System at p-System bootstrap time. The
execution environments for referenced units which
are resident in other library code files (such as
SYSTEM.LIBRARY or a user library code file) are
described completely so that the execution
environment can be reconstructed without
performing detailed examinations of the libraries.

0400101:06A 6-7



Program Execution

Also included within the PED is a list of
referenced library code files. The description of
each library code file includes the name of the
library code file and the name of the volume on
which the library code file resided at the time
the PED was constructed. Part of the
environment reconstruction process involves
establishing the location of each referenced
library code file. A particular library code file
is sought first on the volume indicated in the
PED information, then on the prefix volume, and
then on the root volume.

While specific volume block offsets for referenced
library code files aren't recorded within aPED,
the relative block locations of segments within
the various referenced library code files are
recorded. A mechanism is required to assure
that this internal code file configuration is the
same at program invocation time as it was when
the PED was constructed.

In order to perform this check, the QUICKSTART
utility installs into block zero of each referenced
library code file a number in the form of a
16-bit checksum calculated over the entire
contents of the library file. The QUICKSTART
utility program only installs a new checksum into
a referenced library code file when it lacks a
valid checksum. The checksum value zero is
reserved to indicate the absence of a valid
checksum. The p-System compilers and
assemblers create code files with the checksum
field set to zero. The p-System LIBRARY utility
program clears the checksum field when it
creates a new output code file.

6-8 0400101:06A



Program Execution

A copy of the checksum for each referenced
library code file is also stored within the PED.
During the environment reconstruction process,
the checksum in each library code file is
compared with the corresponding checksum in the
PED. If the checksums aren't the same, the
configuration which existed at QUICKSTART time
has changed, and the reconstruction of the
execution environment using the information
stored in the PED is aborted. Thus, whenever a
referenced library code file is modified, any
PEDs which reference that library code file
become obsolete.

The following is a rough sketch of the steps
taken by the system when reconstructing the
execution environment for a program from aPED:

• Using the information stored in block zero of
the code file, read the contents of the PED
into a temporary buffer.

• Extract the list of system unit names from the
PED and locate the E Rec for each of the
referenced system units.-

• Extract the referenced library code file
descriptors from the PED. As each descriptor
is extracted, establish the location of the
specified library code file by searching the
following volumes: the volume specified in the
descriptor, the prefix volume, the root volume.
Report an environment reconstruction failure
if a particular library code file can't be
located, or if the checksum stored in a
located library code file doesn't match the
checksum in the corresponding descriptor in
the PED.

0400101:06A 6-9



Program Execution

• Allocate enough memory
E_Vect IS, E_Rec's, and
necessary to represent
environment for the program.

to contain the
SIBs which are

the execution

• Extract the set of E_Vect templates from the
PED and move them into position.

• Examine each E Vect, converting each of its
entries from a "global segment numberll to a
pointer to the appropriate E_Rec structure.

• Extract the set of SIB templates from the
PED and construct the SIBs for all of the
units and sUbsidiary segments within the
program's execution environment.

• Link the E Rec's for the principal segments
within the environment into the system's list
of active E Rec's.

Segment Dictionary Structure

Figure 6-1 shows the revised structure of block
zero of a p-System code file after new fields
related to QUICKSTART have been assigned.
The five words which are labeled in the figure
correspond to the five unused words in the
original block zero structure.

6-10 0400101:06A



Program Execution

From this figure, it can be seen that the first
previously unused word has been allocated to hold
a checksum for the code file. (The usage of this
checksum was described in the previous section.)

The next new field is called PED BLK and is the
relative block number within the -code file where
the PED is located. If the PED BLK word
contains zero, the code file doesn't have aPED.

0400101:06A 6-11



Program Execution

The third new word is called PED BLK COUNT
and contains the size of the PED in-blocks.

I
I
1
1 Segment Dictionary
1 Information
I
I
1---------------------------
I NEXT_DICT
1---------------------------
I unused
1---------------------------
I unused
1---------------------------

1 : I CHECKSUM
1---------------------------

2: I PED_BLK
1---------------------------

3: I PED~LK_COUNT

1---------------------------
4: I Reserved For

1--
5: I SofTech Part Number

1---------------------------
I
1 Copyright Notice
I
1---------------------------
I Byte Sex Indicator

Figure 6-1. Code File Block Zero Structure

6-12 0400101:06A



Program Execution

PED Structure

The general structure of a PED is illustrated in
Figure 6-2. From this figure, it can be seen
that a PED begins with a header record. This
record contains global information about the
program and about the remaining structures
contained within the PED. The structure of this
header record is defined by the PED_HEADER
type declaration shown in Figure 6-2.

The PED BYTE SEX field of the header record
indicates the byte sex of the PED. A value of 1.
is placed into this field at the time the PED is
constructed. If at program invocation time this
field contains the value 256, then the PED has
the opposite byte sex from the byte sex of the
processor on which the quickstarted program is
being invoked.

The PED LAST SYSTEM SEGMENT field of the
PED HEADER record contains the number of
operating system segments which are referenced
by the execution environment for the program
described by the PED. This field of the header
record is set to the value zero if the PED
describes the execution environment of the
operating system itself.

0400101:06A 6-13



Program Execution

1
1

PED_HEADER 1
1

1 1
1---------------------------1<----1
I System Unit Name 1 1
1---------------------------1 1
1 System Unit Name 1 I
1---------------------------1 1
1 1 1
1 1<----1
1 1
1---------------------------1<----
1 library file descriptor 1
1---------------------------1
J library file descriptor 1
1---------------------------1
I 1
1 1
I 1<----
1 1
1---------------------------1<----
I PED_EVEC 1
I I
I 1
1---------------------------1
I PED_EVEC I
1 I
1 1
1---------------------------1
1 1
1 I 1
1 1<----1
1 I
1---------------------------1<----1
1 PED_PSUEDO_SIB 1 I
1---------------------------1 1
1 PED_PSEUDO_SIB I I
1---------------------------1 I
1 I 1
I 1 1
1 I 1
-----------------------------<----1

Sequence of
referenced
system unit
names~

sequence of
library code
file
descriptors.

Sequence of
variable length
E_Vect templates,
with global
segment numbers.

Sequence of
pseudo SIBs
with library
number and
library
relative
disk locations.

6-14

Figure 6-2. General PED Structure

0400101:06A



0400101:06A

Program Execution

6-15



Program Execution

typ~ {PED header record.}

ped_header ;
record

peo_byte_sex: integer;
{PED Byte sex indicator.}

ped_forroat_level: integer;
{PED structures
version indicator.}

ped_Iibrary_count: integer;
{Number of library
file descriptors.}

ped_principal_segment_count: integer;
{Number of principal
segments described.}

ped_subsidiary_segment_count: integer;
{Number of
subsidiary segments
descr ibed.}

ped_total_evec_words: integer;
{Size of EVEC
templates. }

ped_Iast_system_segment: integer;
{Number of system
segments referenced
by environment.}

ped_start_unit: integer;
{Global segment

number of
principal segment
where execution
should begin.!

ped_uses_realops_unit: boolean;
{TRUE if REALOPS
unit required.}

ped_expansion_area:
array [1 •• 51 of O•• 0;

{Reserved for
future use.!

end;

6-16

Figure 6-3. PED Header Structure

0400101:06A



Program Execution

Following the PED HEADER record is a sequence
of 8-character system unit names. The number
of names in the sequence is given by the
PED LAST SYSTEM SEGMENT field of the
PED-HEAD-ER record. Each name in the
sequence is the name of a system unit which is
referenced by the execution environment
described by the PED.

The list of system unit names is followed by a
sequence of library file descriptors. The number
of library file descriptors is given by the
PED LIBRARY COUNT field of the
PED,=-HEADER record. Each library file
descriptor contains a word with the checksum for
the referenced library file, followed by a string
identifying the volume the library file should be
located on and a string containing the title of
the library file. These strings occupy the
minimum number of words required for the string
value. For each of these string values, if the
length of the string plus the length byte is odd,
a padding byte of zero will follow the string to
cause the string to occupy an integral number of
words in the PED.

0400101:06A 6-17



Program Execution

The library file descriptors are in turn followed
by a sequence of E_Vect templates. There are a
total of PED PRINCIPAL SEGMENT COUNT
E _ Ve c t t e mpia t e s wh i c h -0 c cup Y
PED TOTAL EVEC WORDS in the PED. These
E_Vect temPlates are exactly the same size as
the E Vect's which are needed to represent the
execution environment of the program.

Each of these E_Vect templates begins with a
word containing the number of entries in the
E_Vect. This count word is in turn followed by
the words for the E Vect entries. The E Vect
entries are followed in the template by an extra
entry (one word in length) which is required by
the operating system.

Each of the E Vect entries stored in the E Vect
templates of the PED references a particular
segment of the. program's environment via a
"global segment number."

The global segment number zero is reserved to
denote an empty E_Vect entry which should be
initialized to the value NIL.

An E_Vect entry containing a negative global
segment number in the
range-PED_LAST_SYSTEM_SEGMENT••-1 denotes
a reference to a system segment. The identity
of the referenced system segment is established
by using the absolute value of the global segment
number as an index into the sequence of system
segment names.

6-18 0400101:06A



Program Execution

An E_Vect entry containing a positive global
segment number in the range
1..(PED PRINCIPAL SEGMENT COUNT +
PED SUBSIDIARY SEGMENT COUNT) indicates a
reference to the E_Rec for-one of the segments
of the environment described in the PED. The
E_Rec structure for a given nonsystem segment is
located by using the global segment number as an
index into an array of E_Rec structures which is
allocated at environment reconstruction time. An
index value in the range
I..PED PRINCIPAL SEGMENT COUNT selects the
E_Rec -for one of-the princiPal segments within
the execution environment. An index value which
is greater than
PED PRINCIPAL SEGMENT COUNT specifies a
reference to one of the subsidiary segments
within the program execution environment.

Following the E Vect templates in the PED is a
sequence of "pseudo-SIB" records. The structure
of a pseudo SIB is defined in Figure 6-4. Each
pseudo SIB is a template for a fragment of an
actual SIB, which must be allocated when the
program's execution environment is reconstructed.
Thus, there exists one pseudo SIB for each
nonsystem segment in the environment. The
pseudo SIBs for the principal segments appear
first in the sequence followed by the pseudo SIBs
for the sUbsidiary segments in the environment.

0400101:06A 6-19



Program Execution

type

ped_pseudo_sib
record

ps_seg_name: alpha;
{Name of segment.!

ps_seg_leng: integer;
{Length of segment.!

ps_se9_addr: integer;
{Relative block
address of segment
in library file.!

ps_seg_data_size: integer;
{Size of segment
data area.!

ps_seg_lib_num: integer;
{Index into sequence
of library code
file descriptors.!

ps_seg_attributes:
packed
record

ps_relocatable: boolean;
{RelocatabJe
indicator from
segment
dictionary.!

ps_mach_type: m_ types;
{Type of code in
segment.}

ps_filler: 0 .. 2047;
{ll bits of filler
to round out to
one word.}

end;
end;

6-20

Figure 6-4. Pseudo SIB Structure

0400101:06A



Program Execution

The information stored in each pseudo SIB
structure consists of the information from the
segment dictionary entry for the segment which
is needed to construct the actual SIB when the
program's environment is reconstructed. The
PS_SEG_LIB_NUM field of a pseudo SIB is used
to establish the identity of the library code file
which contains the segment described by the
pseudo SIB. This identity is established by using
the PS SEG LIB NUM field as an index into the
sequence or library file descriptors within the
PED. The index value one selects the first
library file descriptor in the sequence.

0400101:06A 6-21





Appendices





APPENDICES





APPENDIX A
P-MACHINE OPCODES

(Alpbabetic Order)

Descriptioo

Byte Array
Set
Integer
Real
String
Unsigned

Equal
Equal
Equal
Equal
Equal
Equal

Absolute Value Integer
Absolute Value Real
Add Integer
Adjust Set
Add Real
Assign String
Boolean Not
Break point
Copy Array Parameter
Call Formal Procedure
Call Global Procedure
Check Subrange Bounds
Call Intermediate Procedure
Call Local Procedure
Copy String Parameter
Check String Index
Call External Global
Call External Intermediate
Call External Local
Decrement Integer
Set Difference
Duplicate One Word
Duplicate Real
Divide Integer
Divide Real
Equal False Jump
Equal Byte Array
Equal Set
Equal Real
Equal String
Equal Integer
False Jump
False Jump Long
Float
Greater Than or
Greater Than or
Greater Than or
Greater Than or
Greater Than or
Greater Than or
Increment
Increment Integer
Index
Set Membership
Set Intersection
Index Array
Index Packed Array
Load Extended Address
Logical And
Load Global Address
Load Contant Offset
Load Intermediate Address
Load Byte
Load Constant
Load Constant Byte

~ ~

224 EO
227 E3
162 A2
199 C7
192 CO
235 EB
159 9F
158 9E
171 AB
151 97
145 91
203 CB
146 92
144 90
172 AC
236 EC
148 94
149 95
147 93
238 EE
221 DD
226 E2
198 C6
141 8D
195 C3
210 D2
185 B9
182 B6
205 CD
232 E8
176 BO
212 D4
213 D5
204 CC
187 BB
184 B8
179 B3
207 CF
234 EA
181 B5
231 E7
237 ED
230 E6
218 DA
220 DC
215 D7
216 D8
155 9B
161 Al
134 86
130 82
136 88
167 A7
131 83
128 80

ABI
ABR
ADI
ADJ
ADR
ASTR
BNOT
BPT
CAP
CFP
CGP
CHK
CIP
CLP
CSP
CSTR
CXG
CXI
CXL
DECI
DIF
DUPI
DUPR
DVI
DVR
EFJ
EQBYT
EQPWR
EQREAL
EQSTR
EQUI
FJP
FJPL
FLT
GEBYT
GEPWR
GEQI
GEREAL
GESTR
GEUSW
INC
INCI
IND
INN
INT
IXA
IXP
LAE
LAND
LAO
LCD
LDA
LDB
LDC
LDCB

0400101:0AA A-3



Appendix A

LDCI
LDCN
LDCRL
LDE
LDL
LDM
LDO
LDP
LDRL
LEBYT
LEPWR
LEQI
LEREAL
LESTR
LEUSW
LLA
LNOT
LOD
LOR
LPR
LSL
MODI
MOV
MPI
MPR
NAT
NAT-INFO
NEQI
NFJ
NGI
NGR
NaP
RESERVEI
RESERVE2
RESERVE3
RESERVE4
RESERVES
RESERVE6
RND
RPU
SBI
SBR
SCPIl
SCPI2
SCXGl
SCXG2
SCXG3
SCXG4
SCXG5
SCXG6
SCXG7
SCXG8
SIGNAL
SINDO
SINDI
SlND2
SIND3
SIND4
SIND5
SlND6
SIND7
SLDCO
SLDCl
SLDC2
SLDC3

A-4

129
152
242
154
135
208
133
201
243
186
183
178
206
233
180
132
229
137
160
157
153
143
197
140
194
168
169
177
211
225
228
156
250
251
252
253
254
255
191
150
163
193
239
240
112
113
114
115
116
117
118
119
222
120
121
122
123
124
125
126
127

o
1
2
3

81 Load Constant Integer
98 Load Constant NIL
F2 Load Constant Real
9A Load Extended
87 Load Local
DO Load Multiple
85 Load Global
C9 Load Packed
F3 Load Real
BA Less Than or Equal Byte Array
B7 Less Than or Equal Set
B2 Less Than or Equal Integer
CE Less Than or Equal Real
E9 Less Than or Equal String
B4 Unsigned Less Than or Equal
84 Load Local Address
E5 Logical Not
89 Load Intermediate
AO LOgical Or
9D Load Processor Register
99 Load Static Link
8F Modulo Integers
C5 Move
8C MUltiply Integer
C2 MUltiply Real
A8 Enter Native Code
A9 Native Code Information
Bl Not Equal Integer
D3 Not Equal False Jump
El Negate Integer
E4 Negate Real
9C No Operation
FA reserved
FB
FC
FD
FE
FF
BF Round Real
96 Return from Procedure
A3 Subtract Integer
C1 Subtract Real
FF Short Call Intermediate Procedure
FO
70 Short Call E>ternal Global
71
72
73
74
75
76
77
DE Signal
78 Short Index
79
7A
7B
7C
7D
7E
7F
00 Short Load Constant
01
02
03

0400101:0AA



Appendix A

SLDC4 4 04
SLDC5 5 05
SLDC6 6 06
SLOC7 7 07
SLDC8 8 08
SLDC9 9 09
SLDCIO 10 OA
SLDC11 11 OB
SLDC12 12 OC
SLDC13 13 OD
SLDC14 14 OE
SLDC15 15 OF
SLDC16 16 10
SLDC17 17 11
SLDC18 18 12
SLDC19 19 13
SLDC20 20 14
SLDC21 21 15
SLDC22 22 16
SLOC23 23 17
SLDC24 24 18
SLDC25 25 19
SLDC26 26 lA
SLDC27 27 IB
SLDC28 28 lC
SLDC29 29 ID
SLDC30 30 IE
SLDC31 31 IF
SLDLI 32 20 Short Load Local
SLDL2 33 21
SLDL3 34 22
SLDL4 35 23
SLDL5 36 24
SLDL6 37 25
SLDL7 38 26
SLDL8 39 27
SLDL9 40 28
SLDLIO 41 29
SLDL11 42 2A
SLDL12 43 2B
SLDL13 44 2C
SLDL14 45 2D
SLDL15 46 2E
SLDL16 47 2F
SLDOI 48 30 Short Load Global
SLD02 49 31
SLD03 50 32
SLD04 51 33
SLD05 52 34
SLD06 53 35
SLD07 54 36
SLD08 55 37
SLD09 56 38
SLDOIO 57 39
SLD011 58 3A
SLD012 59 3B
SLD013 60 3C
SLD014 61 3D
SLD015 62 3E
SLD016 63 3F
SLLAI 96 60 Short Load Local Address
SLLA2 97 61
SLLA3 98 62
SLLA4 99 63

0400101:0AA A-5



Appendix A

SLLA5 100 64
SLLA6 101 65
SLLA7 102 66
SLLA8 103 67
SLODI 173 liD Short Load Intermediate
SLOD2 174 AE
SPR 209 Dl Store Processor Register
SRO 165 AS store Global
SRS 188 BC Sub range Set
SSTLI 104 68 Short Store Local
SSTL2 105 69
SSTL3 106 6A
SSTL4 107 6B
SSTLS 108 6C
SSTL6 109 6D
SSTL7 110 6E
SSTL8 111 6F
STB 200 C8 Store Byte
STE 217 D9 Store Extended
STL 164 A4 Store Local
S1'~1 142 8E Store Mult iple
STO 196 C4 Store
STP 202 CA Store Packed
STR 166 A6 Store Intermediate
STRL 244 F4 Store Real
SWAP 189 BD Swap
TJP 241 Fl True Jump
Tt\C 190 BE Truncate Real
lIJP 138 8A Unconditional Jump
USPL 139 8B Unconditional Jump Long
lINI 219 DB Set Union
WAIT 223 DF Kait
XJP 214 D6 Case Jump

A-6 0400101:0AA



APPENDIX B
P-MACBINE OPCODES

(Numeric Order)

~ ~ ~ Description

0 00 SLOCO Short Load Constant
1 01 SLOCI
2 02 SLOC2
3 03 SLOC3
4 04 SLOC4
5 05 SLOC5
6 06 SLOC6
7 07 SLOC7
8 08 SLOC8
9 09 SLOC9

10 01'. SLOCI0
11 OB SLOCll
12 OC SLOC12
13 00 SLOC13
14 OE SLOC14
15 OF SLOC15
16 10 SLOC16
17 11 SLOCl7
18 12 SLOC18
19 13 SLOC19
20 14 SLOC20
21 15 SLOC21
22 16 SLOC22
23 17 SLOC23
24 18 SLOC24
25 19 SLOC25
26 11'. SLOC26
27 IB SLOC27
28 lC SLOC28
29 10 SLOC29
30 IE SLOC30
31 IF SLOC31
32 20 SLOLI Short Load Local
33 21 SLOL2
34 22 SLOL3
35 23 SLOL4
36 24 SLOL5
37 25 SLOL6
38 26 SLOL7
39 27 SLOL8
40 28 SLOL9
41 29 SLOLI0
42 21'. SLOL11
43 2B SLOL12
44 2C SLOL13
45 20 SLOL14
46 2E SLOL15
47 2F SLOL16
48 30 SLOOI Short Load Global
49 31 SLOO2
50 32 SLOO3
51 33 SLOO4
52 34 SLOO5
53 35 SLOO6
54 36 SLOO7

0400101:0AA A-7



Appendix B

55 37 SLD08
56 38 SLD09
57 39 SLDOIO
58 3A SLDOll
59 3B SLD012
60 3C SLD013
61 3D SLD014
62 3E SLD015
63 3F SLD016
64 40 unused

95 5F
96 60 SLLAI Short Load Local Address
97 61 SLLA2
98 62 SLLA3
99 63 SLLA4

100 64 SLLA5
101 65 SLLA6
102 66 SLLA7
103 67 SLLA8
104 68 SSTLI Short Store Local
105 69 SSTL2 .
106 6A SSTL3
107 6B SSTL4
108 6C SSTL5
109 6D SSTL6
110 6E SSTL7
111 6F SSTL8
112 70 SCXGl Short Call External Global
113 71 SCXG2
114 72 SCXG3
115 73 SCXG4
116 74 SCXG5
117 75 SCXG6
118 76 SCXG7
119 77 SCXG8
120 78 SINDO Short Index
121 79 SINDI
122 7A SIND2
123 7B SIND3
124 7C SIND4
125 7D SIND5
126 7E SIND6
127 7F SIND7
128 80 LDCB Load Constant Byte
129 81 LDCI Load Constant Integer
130 82 LCO Load Contant Offset
131 83 LDC Load Word Constant
132 84 LLA Load Local Address
133 85 LDO Load Global
l34 86 LAO Load Global Address
135 87 LDL Load Local
136 88 LDA Load Intermediate Address
137 89 LOD Load Intermediate
138 8A UJP Unconditional Jump
139 8B UJPL Unconditional Jump Long
140 8C MPI MUltiply Integer
141 8D DVI Divide Integer
142 8E STM Store fI1ultiple
143 8F MODI Modulo Integers
144 90 CLP Call Local Procedure
145 91 CGP Call Global Procedure
146 92 ClP Call Intermediate Procedure
147 93 CXL Call External Local

A-8 0400101:0AA



148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

94 CXG
95 CXI
96 RPU
97 CFP
98 LDCN
99 LSL
9A LDE
9B LAE
9C NOP
9D LPR
9E BPT
9F BNOT
AO LOR
Al LAND
A2 ADI
A3 SBI
A4 STL
A5 SRO
A6 STR
A7 LDB
A8 NAT
A9 NAT-INFO
AA
AB CAP
AC CSP
AD SLODI
AE SLOD2
AF
BO EQUI
Bl NEQI
B2 LEQI
B3 GEQI
B4 LEUSW
B5 GEUSW
B6 EQPWR
B7 LEPWR
B8 GEPWR
89 EQBYT
BA LEBYT
BB GEBYT
BC SRS
BD SWAP
BE TNC
BF RND
CO ADR
Cl SBR
C2 MPR
C3 DVR
C4 STO
C5 MOV
C6 DUPR
C7 ADJ
C8 STB
C9 LDP
CA STP
CB CHK
CC FLT
CD EQREAL
CE LEREAL
CF GEREAL
DO LDM
Dl SPR
D2 EFJ
D3 NFJ

Call External Global
Call External Intermediate
Return from Procedure
Call Formal Procedure
Load Constant NIL
Load Static Link
Load Extended
Load Extended Address
No Operation
Load Processor Register
Break point
Boolean Not
Logical Or
Logical And
Add Int€'ger
Subtract Integer
Store Local
Store Global
Store Intermediate
Load Byte
Enter Native Code
Native Code Information
reserved
Copy Array Parameter
Copy String Parameter
Short Load Intermediate

unused
Equal Integer
Not Equal Integer
Less Than or Equal Integer
Greater Than or Equal Integer
Less Than or Equal Unsigned
Greater Than or Equal Unsigned
Equal Set
Less Than or Equal Set
Greater Than or Equal Set
Equal Byte Array
Less Than or Equal Byte Array
Greater Than or Equal Byte Array
Subrange Set
Swap
Truncate Real
Round Real
Add Real
Subtract Real
Mult iply Real
Divide Real
Store
Move
Duplicate Real
Adjust Set
Store Byte
Load Packed
Store Packed
Check Subrange Bounds
Float
Equal Real
Less Than or Equal Real
Greater Than or Equal Real
Load Multiple
Store Processor Register
Equal False Jump
Not Equal False Jump

Appendix B

0400101:0AA A-9



Appendix B

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

249
250
251
252
253
254
255

D4 FJP
D5 FJPL
D6 XJP
D7 lXA
D8 lXP
D9 STE
DA INN
DB UNI
DC INT
DD DIF
DE SIGNAL
DF WAIT
EO ABI
El NGI
E2 DUPI
E3 ABR
E4 NGR
E5 LNOT
E6 IND
E7 INC
E8 EQSTR
E9 LESTR
EA GESTR
EB ASTR
EC CSTR
ED INCI
EE DECI
EF SCPII
FO SCPI2
Fl TJP
F2 LDCRL
F3 LDRL
F4 STRL
F5

F9
FA RESERVE 1
FB RESERVE2
FC RESERVE3
FD RESERVE4
FE RESERVE5
FF RESERVE6

False Jump
False Long Jump
Case Jump
Index Array
Index Packed Array
Store Extended
Set Membership
Set Union
Set Intersection
Set Difference
Signal
wait
Absolute Value Integer
Negate Integer
Duplicate One Word
Absolute Value Real
Negate Real
Logical Not
Index
Increment
Equal String
Less Than or Equal String
Greater Than or Equal String
Assign String
Check String Index
Increment Integer
Decrement Integer
Short Call Intermediate Procedure

True Jump
Load Constant Real
Load Real
Store Real
unused

reserved

A-I 0 0400I0I:0AA



APPENDIX C
P-MACHINE INTRINSICS

Kernel procedures
emulator.

provided in the p-machine

1 - reserved
2 -
3 -
4 - Procedure RELOCSEG( se9_erec:erec-p ) J
5 - reserved
6 -
7 -
8 -
9 -

10 
11 
12 
13 -
14 - Procedure MOVESEG( seg_sib:sib-p: S[c_pool:poolpt[~ src_offset:memptr );
15 - Procedure MOVELEFT( var source:bytea[ray; var dest:bytearray;

n_bytes:integer ),
16 - Procedure MOVERIGHT( var soulce:bytearray; var dest:bytea[[ay;

n_bytes:integer ),
17 - reserved
18 - Procedure ONITREAO( unit:unitnum; var buff:bytearray;

n_bytes, block, control:integer;
19 - Procedure UNITWRITE( unit:unitnum; vat buff:bytearray;

"_bytes, block, control:integer;
20 - Procedure TIME( var hi_word, lo_word:integer );
21 - Procedure FILLCHAR( vat dest:bytearray; n_bytes, value:lnteger );

{The SCAN parameters shown here do not match those in an actual SCAN call:
the Pascal compiler generates the appropriate parameters.}

var dest:bytearray; pooldesc:poolptr;
pooloffset:memptr; nbytes:integer );
source:bytearray; pooldesc:poolptr;
pooloffset:memptr; nbytes:integer );
seg_erec:erec-p: seg_offset, n_words:integer );

UNITSTATUS( unit:unitnum; var stat_rec:status_rec;
control:integer );

ICSEAFCH( var symcursor:symrec; var buffer:bytearray );
TREESEARCH( root:treerec_p; var node:treerec;

name:alpha ):integer;
FEADSEG( seg_erec:erec-p ):integer;

FLIPSEGBYTES (
QUIETI
ENABLE;
ATTACH ( sem:sem_p; vector:integer );
IOFESULT:integerJ
UNITBUSY( unit:unitnum ):boolean;
POWEROFTEN( arg:integer ) :real;
UNITWAIT( unit:unitnum );
UNITCLEAR( unit:unitnum );

25 - Procedure PUTPOOLBYTES(

22 - Function SCAN( disp:integer; not_equal:boolean; target:byte;
var a:bytearray; start_index, mask:integer ):

23 - Procedure IOCHECK;
24 - Procedure GETPOOLBYTES(

26 - Procedure
27 - Procedure
28 - Procedure
29 - Procedure
30 - Function
31 - Funct ion
32 - Function
33 - Procedure
34 - Procedure
35 - reserved
36 - Procedure

37 - Procedure
38 - Funct ion

39 - Funct ion

0400101:0AA A-ll



APPENDIX D
PASCAL DEFINITIONAL RSP

{$U- )
Unit Globals;

InterfacE'

Uses {$u opsys:kernel.codeJ kernel( {types} syscomrec, bytearray );

Type syscom......,.ptr=-syscomrec;
statrec=arraylO •• 29J of integer:
statctrl=packed record

io_direction:(output_status,input_status>;
reserved:array[1 •• 12J of boolean~

user_defined:array[13 .. 151 of boolean:
end;

rwctrl=packed record
async:boolean;
physsect:boolean;
no_spec:boolean;
no_crlf:boolean;
reserved:array[4 .. 12J of boolean;
user_defined:arrayl13 •• 15J of boolean;

end;
word_array=arraylO •• OJ of integer;
char_array=packed array(O •• OJ of char;
p_memory=record case integer of

0: ( i: integer ];
}:( c:char l:
2:( pb:-byte_array );
3: ( pw:"word_array );
4:< pc:'"'char_array ):

end:
disk Inforec=record

tracks_per_disk: integer;
sectors......,.per_track: integer:
bytes_per_sector:integer;
interleave:integer:
first_pascal_track:integer;

en~r~~~s~~~~i~~;~y~r;

Procedure PHE_Signal_Event( event_num:integer ):
Procedure PME_Got_Break:

Implementation

End {Globals}.

I$T PASCAL DEFl~ITIONAL RUN-TIME SUPPORT PACKAGE}
I $U-}
I $D ASY~CHRot.OllS-)

Unit RSP;

Interface

Uses {SU opsys:kernel.code} kernel( { const } DLE,
{ types} iorsltwd,
bytearray, fUll_address,
unitnum, utable, syscomrec,
{ vars } syscom ),

{SU globals.code} globals:

Procedure UNITCLEAR( unit_no:unitnum ):
Procedure UNITSTATUS( unit_no:unitnum: var status:statrec1 control:statctrl );

A-12 0400101:0AA



Appendix D

{Buffer parameter declarations for UNITREAD and UNITWRITE, below, do not
reflect the way Pascal programs use these procedures. In an actual
call, the PascalI compiler generates the appropriate parameters. The
byte-pointer has been separated into two parameters so that the NSP
can handle them individuallY4}

Procedure

Procedure

Procedure

Function
Procedure
Function
Procedure
Procedure
Procedure
Procedure

ONITREAD( unit_no:unitnum1 buffer:p~emory, index:integer;
length:integer; block:integer; control:rwctrl );

UNITWRITE( unit_no:unitnum; buffer:p_memorY1 inde~:integer;

length:integer; block:integer; control:rwctrl );
SYSREAD( unit_no:unitnum; buffer:p_rnemory; index:integer;

length:integer; block:integer; control:rwctrli
codepool:full_8ddress l;

UNITBUSY( unit-no:unitnum ):boolean~

UNITWAIT ( unit_no: unitnum ):
IORESULT:iorsltwd:
IOCHECK,
QUIET,
ENABLE;
TIME( var hiword, loword:integer );

($P)
Implementation

{Note that actual calls to the bios are between two assembly language routines
and parameters may not be passed as in pascal procedures, in particular
parameters and results are often in registers. }

Uses {$u bios.code} BIOS:

Const max_char_vols~29~

lfelO,
cr ..13:

( console,printer,remote , 26 serial vols }
(ASCII linefeed)
(ASCII carriage return)

Type unit_types=(bad,sys,con,dsk,prn,rem,ser,usr);
op_types=(read_op,write_op,init_op,6tatus_op)~

Var event_code:p_memory; {filled in by interpreter)
break_code:p_memory; {filled in by interpreter}
alpha_locked:packed array(l •. max_char_vols} of boolean;
dle_rcvd:packed arrayll •. max_char_vols] of boolean;

{$P}
Function Translate( unit_no:unitnumJ operation:op_types;

var block:integer; var blocked:boolean; var device:integer;
var flags:integer; var u_type:unit_types ):iorsltwd;

procedure trans_err ( err:iorsltwd );
begin

translate:=err:
u_type:=bad;
exit(translate);

end;

begin
{ if an error occurs in translate then u_type will be -bad- and

the function result will indicate what error occurred. )
u_type:=bad;
translate:=i_no_error:
if unit_no<=8

then begin
device:=O;
case unit_no of

0: u_type:=sys;
1,2: u_type.: =con;
3: trans_err ( i_bad_unit );
4,5: begin

0400101:0AA A-13



Appendix D

u_type:=dsk:
device:=unit_no-4:

end;
6: u_type:=prn:
7: if operation=write_op {remin}

then trans_err( i_bad_mode )
else u_type:=rem:

8: if operation~read_op {remoutl
then trans_ecce i_bad_mode
else u_type:~remj

end {case}:
end

else if unit_no< (syscom'" .subsidstart>
then begin

u_type:=dskj
dey ice: =uni t_no-9+2;

end
else if unit_no«(syscomA.subsidstart +

syscom"'ounitdivision.subsidmax)
then with syscom"'ounitable"'!unit_nol do

begin
if ueovblk=O then trans_ecce i_no_unit );
if block>=ueovblk then trans_ecce i_iII_block );
u_type:=dsk;
unit_no:=uphysvol:
if unit_no>=9 then device:~unit_no-9+2

else device:=unit_no-4:
block:=block+ublkoff;
translate:=i_oo_error:

end
else if unit_no«syscom~.subsidstart+

syscom-.wnitdivision.subsidmax+
syscom~.unitdivision.serialmax)

then begin
u_type: =ser;
device: =un i t_no- (syscom~ • sUbsidsta rt+

syscom-.wnitdivision.subsidmax);
end

else if unit_no>cI28
then begin

u_type: =usr;
dey ice: =uni t_no-12 8;

end
else trans_err ( i_bad_unit ) i

blocked:~u_type in [sys,dsk,usr];
case u_type of

con: flags:=l;
rem: flags:=2;
prn: flags:=3;
ser: flags: c 4+devicei

end {case} ~

end {translate};

buffer, index, length, block, control, stack_addr );

var
begin

stack_addr[O):cO;
stack_addr III : =0,
SYSREAD{ unit_no,

end {UNITREAD);

($Pl
Procedure UNITREAD{ unit_no:unitnum; buffer:p_memory; index:integer;

length:integer; block:integer; control:rwctrl 1;
stack_addr:fulladdress;

Procedure SYSREAD{ unit_no:unitnum; buffer:p_memory; index:integer;
length:integer; block:integer; control:rwctrl;
codepool:fulladdress ,;

A-14 0400101:0AA



Appendix D

var device,flags:integerJ
blocked:boolean;
u_type:unit_types;
iorslt:iorsltwd;

Function Char_In:iorsltwd;
label 100,
var ch:char;

iorslt:iorsltwd;

Procedure check_reSUlt;
begin

if iorslt<)i_no_error
then begin

char_in:-iorslt;
exit(char_in) ;

end;
end {check_result};

procedure echo_char{ ch:char );
begin

iorslt:=bios_con_write< ch ) j

check_result;
if (ch=chr(cr» and (not control.no_crlf)

then echo_char ( chr <If) ):
end {echo_char};

begin
while length>O do

begin
case u_type of

con: iorslt:-bios_con_read( ch );
prn: iorslt:abios_prn_read( ch );
rem: iorslt:=bios_rem_read( ch );
sec: iorslt:=bios_ser_read( device, ch );

end:
check_result;
if not control.no_spec then

begin
if ch=sY6com~.crtinfo.eof

then begin
if unit_no=l

then fillchar( buffer.pcAlindex), length, chr(O) )
else buffer.pcA[index):ach;

exit (char_in);
end;

if ch=syscom~.crtinfo.a)phalok

then begin
alpha_locked!flagsJ:~notalpha_lockedlflagsJ,
goto 100;

end;
end {not no_spec};

if alpha_lockedlflagsJ
then if ch in [

then ch:~chr( ord(ch)-32 ),
if unit_no=l then echo_char ( ch );
buffer.pc~[index)::ch;

index:'" index+l;
length:-length-l,
100 :

end {while length>O}~

char_in:=iorslt~

end (char_in);

0400101:0AA A-IS



Appendix D

begin
syscorn A .iocslt:=translate{ unit_no, read_op, block, blocked,

device, flags, u_type ) 1
if syscomA.iocslt<>i_no_ec[or then exit(SYSREAOJi
if blocked

then case u_type of
sys: syscomA.iocslt:=bios_sys_cead( block, length, buffer, index,

device, control );
dsk: syscomA.iorslt:=bios_dBk_cead( block, length, buffer, index,

device, control, codepool );
usc; syscomA.iorslt:=bios_usc_cead( block, length, buffer, index,

device, control) i
end {case}

else syscornA.iocslt:=chac_in;
end (SYSREAO),

( SPI
Proceducp liNI'l'WPI'I'r:{ unit_no:unitnurn: buffer:p-fternory; index:integec;

length:integer; block:integec; cantrol:rwctrl }i
v~r device,flags:integec;

blocked:boolean;
u_type: uni t_types:
iorslt:iorsltwd;

Function Char_Out:iorslt\rridi
var ch:char;

iorslt:iorsltwd;
i:integer;

Procedure check_result;
begin

if iorslt<>i_no_error
then begin

char_out:=iorslt:
exi t (char_out) ;

end;
end {check_result};

Procedure Send_Char ( ch:char ):
begin

case u_type of
con: iorslt:=bios_con_wr tee ch )
prn: iorslt:=bios_prn_wr tee ch )
ren,: iorslt:a::bios_rem_wr tee ch )
ser: iorslt:::obios_ser_wr tee deY! e, ch );

end;
check_result:
if (ch=chr(cr» and (not control.no crlf)

then send_cha r ( chr (l f) ):
end {send_char};

begin
while length>O do

begin
ch:a::buffer.pc~lindex]:

if control.no_spec
then send_char( ch )
else if dle_rcvdlflagsJ

then begin
for i:=l to ord(ch)-32 do send_char(
dle_rcvdlflagsJ:=false;

end
else if ch=chr(dle)

then dle_rcvdlflagsJ:a::true
else send_char( ch );

index:=inde:x+l;
length:=length-l:

end {while length>O};
char_out:a::iorslt;

A-l6 0400l0l:0AA



Appendix D

end (char_out);

begin
syscomA.iorslt:=translate( unit_no, write_op, block, blocked,

device, flags, u_type )i
if syscom A .iorslt<>i_no_error then exit <uNITWRITE) ;
if blocked

then case u_type of
sys: syscom.... iorslt:=bios_sys_writef block, length, buffer, index,

device, control ):
dsk: syscom .... iorslt: z bio8_dsk_write( block, length, buffer, index,

device, control );
usr: syscom.... iorslt:-bios_us[_write( block, length, buffer, index,

device, control ):
end {case}

else syscom.... ior61t:~char_out;
end {UNITWRITE};

{SP)
Procedure UNITCLEAR{ unIt no:unitnum );
var block,device,flags:integer;

blocked:boolean;
u_type:unit_types;

begin
syscom.... iorslt:=translate( unit_no, init_op, block, blocked,

device, flags, u_type );
if syscomA.iorslt<>i_no_error then exit(UNITCLEAR)~

case u_type of
sys: syscom~.iorslt;~bios_sys_init(device, PME_signal_event );
con: syscomA.iorslt;Ebios_con_init( PME_got_break, syscom );
dsk: syscomA.iorslt::bios_dsk_init( device );
prn: syscomA.iorslt:=bios_prn_init;
rem: syscom".iorslt:=bios_rem_init;
ser: syscom".iorslt:zbios_ser_init( device );
usr: syscom".iorslt:=bios_usr_init( device );

end {case};
if not blocked

then begin
alpha_lockedlflags}:=false;
dle_rcvdlflags}:=false;

end;
end (UNITCLEAR);

{ SP)
Procedure UNITSTATUS{ unit_no:unitnum; var status:statrec; control:statctrl };
var block,device,flags:integer;

blocked:boolean;
u_type:unit_types;

blocked,

);
);
control );
);
),

control );
control );

control
control
status,
control
control
status,
status,

status,
status,
device,
status,
status,
device,
device,

begin
syscom".iorslt:~translate(unit_no, status_op, block,

device, flags, u_type )~

if syscom".iorslt<>i_no_error then exit(UNITSTATUS)~

case u_type of
sys: syscom'".iorslt:=bios_sys_stat(
con: syscomA.iorslt:~bios_con_stat(

dsk: syscom".iorslt:=bios_dsk_stat(
prn: syscom'"'. iorslt =bios-prn_stat (
rem: syscom".iorslt Ebios_rem_stat(
ser: syscom".iorslt =bios_ser_stat(
usr: syscom".iorslt ~bios_usr_stat(

end {case} I
end {UNITSTATUS};

0400101:0AA A-17



Appendix D

{ $P}
Function UNITBUSY{ unit_oo:unitnum ):boolean};
var in_status,

out_status: statrec;
cont rol_word: statct r 1:

begin
($B ASYNCHRONOUS+)
cont rol_word 6 io_di reet ion: "'input_status;
unitstatus< unit_no, in_status, control_word ) ~

control_word.io_direction:=output_statu5;
unitstatus< unit_oo, out_status, control_word );
unitbusy:"" (in_status[O]<)O) or (out_status[Ol<>O);
($E ASYNCHRONOUS+)
{$B ASYNCHRONOUS-}
un i tbusy: .. false t
{$E ASYNCHRONOUS- I

end {UNITBUSY} j

Procedure UNITWAIT{ unit_oo:unitnum };
var in_status,

out_status: statrec;
in_ctrl_word,
out_ctrI_word: statctrl;

begin
{$B ASYNCHRONOUS+}
in_etr I_word. io_direction: c:input_statu5;
out_ct[l_wo[d.io_di[ection:~output_status;

repeat
unitstatus{ unit_oo, in_status, in_ctrl_word );
unitstatus( unit_no, out_status, out_ctrl_word );

until Cin_status(Ol-O) and (out_status(Ol~O)1
HE ASYNCHRONOUT+ I
{$B ASYNCHRONOUS- I
{unitwait does nothing on synchronous systems}
{$E ASYNCHRONOUS-}

end (UNITWAITI,

{$P}
Function IORESULT{:iorsltwd}1
begin

ioresult:~syscomA.iorslt;

end IIORESULT):

Procedure IOCHECK1
begin

if syscomA.iorslt<>i_no_error then { exec_error( 10 ) }r
end UOCHECK} ~

Procedure QUIET;
begin

bios_quiet;
end (QUIET):

Procedure ENABLE;
begin

bios_enable;
end (ENABLE),

Procedure TIME{ var hiword, loword:integer };
Var status: statrec;

control: statctrl~

begin
UNITSTATUSCO,status,control):
loword:·statusllJ~

hiword:=status[2J:
end {TIME}~

End (RSP).

A-18 0400101:0AA



APPENDIX E
PASCAL DEFINITIONAL BIOS

I $T P~S('~I, DEFINITIONAL B~SIC INPUT/OUTPUT SYSTEM}
($U- )

Unit BIOS:

Interface

Uses {$u opsys:kernel.codeJ KERNEL( { types} full_address, byteacray,
iorsltwd, syscomrec ),

{$u globals.codel globals;

Var curform:disk_inforec~

sect_pec_block:integer:
hi_addr:p_memorYi
sectoc_buffer:p_memory;
sect_trans:p_memorYi

{initialized by bootstrap}
(initialized by bootstrap)
{initialized by bootstrap}
{initialized by bootstrap}
(initialized by bootstrap)

Function bios_con_read( var ch:char ):50rsltwd;
Function bios_con_write( ch:char ):iorsltwd;
Function bios_con_init( procedure got_break; syscom:syscom-ptr ) :iorsltwd:
Function bios_con_stat( var status:statrec; control:statctrl ):iorsltwd;

Function bios_prn_read< var cn:char ):iorsltwo;
Function bios_prn_write( cn:char ):iorsltwd;
Function bios_prn_init:iorsltwd;
Function bios_prn_stat( var status:statrec; control:statctrl ):iorsltwd;

Function bios_dsk_read( block:integer; lengtn:integer; buffer:p-memory:
index, drive:integer; control:rwctrl:
codepool:fulladdress ):jorsltwd;

Function bios_dsk_writee block:integer; length:integer: buffer:p_memory;
index, drive:integer; control:rwctrl ) :iorsltwd:

Function bios_dsk_init( drive:integer ):iorsltwd:
Function bios_dsk_stat( drive:integer; var status:statrec:

control:statctrl ):iorsltwd;

Function bios_rern_read ( var cn :char ): iorsltwd;
Function bios_reItLwrite( ch:char ) :iorsltwd;
Function bios_rern_init:iorsltwd;
Function bios_rern_state var status:statrec; control:statctrl ):iorsltwd;

Function bios_usr_read( block:integer; length:integer; buffer:p_memory;
index, device:integer; control:rwctrl ):iorsltwd:

Function bios_usr_write( block:integer; length:integer: buffer:p_memory;
index, device:integer; control:rwctrl ):iorsltwd:

Function bios_usr_init( device:integer ) :jorsltwd;
Function bios_usr_stat< device:integer; var status:statrec;

control:statctrl J:iorsltwd:

Function bio~_sys_reade block:integer; length:integer: buffer:p_memory:
index, device:integer: control:rwctrl ):iorsltwd:

Function bios_sys_write( block:integer; length:integer; buffer:p_memory:
index, device:integeri control:rwctrl ) :iorsltwd:

Function bios_sys_init( device:integer:
procedure signal_event< event_num:integer ) ):iorsltwd:

Function bios_sys_state var status:statreci control:statctrl ):iorsltwd;

Procedure bios_quiet:
Procedure bios_enable:

Function bios_ser_read( device:integer; var ch:char ):iorsltwd;
Function bios_ser_write( device:integeri ch:char ):iorsltwd;
Function bios_ser_init( device:integer ):iorsltwd;
Function bios_ser_state device:integer; var status:statrec:

control:statctrl ):iorsltwd;

0400101:0AA A-19



Appendix E

Procedure disk_change ( var newform:disk_inforec ): {called by bootstrap}

Implementation

Uses

Const

{$u sbios.code} SBIOS;

q_size=64;
q_empty=O;
bell=7;

Type q_rec=record
bottom,top:integer;
iorslt:iorsltwd:
ringbell:boolean;
data:packed arrayll •. q_size] of char:

end:

Va r save_syscom_pt r: syscom_pt [ ;
{ save_break-proc: procedure;} (can
[lush_flag,stop_flag:boolean;

con_queue:q_rec;
prn_queue:~rec;

rem_queue: q_rec;

Procedure pollunits; forward:

Procedure q_init( var q:q_r~c ):
begin

{set up empty queue}
q.bottom:zq_size;
q.top::q_empty;
q.iorslt:=i_noer[or;

end {q_initl:

Function q_count( q:q_rec ):integer;
begin

if q.top>q.bottom then ~count;cq.top-q.bottorn

else q_count:=q_size-q.bottom+q.top1
end {q_count}1

Function q_get ( var q:Cl-rec ) :char 1
begin

repeat
pollunits1

until Cl-count ( q ) >01
if q.bottomo:Cl-size

then q.bottom:=l
else q.bottom:"q.bottom+11

q_get :'q.data lq.bottoml,
if q.bottom=q.top then Cl-init( q )1

end (Cl-get) 1

Procedure ~ut( var q:Cl-reC1 ch:char )1
var old_top:integer~

begin
old_top: -q. top;
if q.top'"'Cl-size

then q.top:-l
else q.top:-q.top+l~

if q.top-q.bottom
then begin {overflow)

q.top:-old_top;
if q.ringbell

then q.iorslt::o::conwrit ( chr (bell' ) ~

exit (q-put);
end~

q.data[q.top}:"ch~

end (q-put);

Procedure pollunits~

var char_rdy:boolean~

ch:char~

A-20 0400101:0AA



Function special_ch~r( var ch:ch~r ):boolean;
{only used on console}
begin

with save_syscom....,ptr" .crtinfo do
begin

special_char:Ktrue;
ch:-chrCordC oddCordCch» and

odd{ord(char.Jllaskllll;
if ch""break

then begin
(call save_break....,proc 1
stop_flag:-false;
flush_flag:Kfalse,

end
else if ch-stop

then stop_flag:Knot stop_flag
else if ch-flush

then begin
flush_flag:Knot flush_flag,
stop_flag:·false~

end
else special_char:Kfalse;

end;

end {special_char};

begin
with con_queue do

begin
iorslt:-constatC char_rdy );
if char_rdy and Ciorslt-i-noerror)

then begin
iorslt:-conread( ch 1;
if iorslt-i-noerroc

then if not special_char( ch )
then Q.....Put C con_queue, ch 1;

end;
end;

with prn_queue do
begin

iorslt:-prnstatC char_rdy 1;
if char_rdy and Ciorslt-i-noerror)

then begin
iorslt:-prnread( ch 1;
if iorsltKi_noerror

then ~putC prn_queue, ch );
end:

end;
with rem_queue do

begin
iorslt:-remstat( char_rdy );
if char_rdy and (iorslt-i-noerror)

then begin
iorslt:-remread( ch ):
if iorslt-i-noerror

then Cl-PutC rem_queue, ch );
end;

end;
end (pollunits};

Function bios_con_read{ var ch:char 1: iorsltwdJ;
begin

flush_flag:-false;
stop_flag:-false;
ch :-~get ( con_queue );
bios_con_read: -con_queue. ior sIt;

end;

0400101:0AA

Appendix E

A-21



Appendix E

Function bios_coo_writer ch:char ) :iorsltwd};
begin

bios_con_'H i te: =i_no_er ror ;
repeat
pollunits~

if flush_flag then exit (bios_coo_write);
until stop_flag-false;
bios_con_write:zconwrit( ch ) i

end;

Function bios_con_init{ procedure got_break; syscom:syscom_ptr ): iorsltwd);
begin

{Note: the address of got_break procedure should be saved at this point,
this cannot be shown in pascal; however, the following describes what is
actually done in a bios:

save_break-pcoc:= got_break; }
save_syscom-ptr: =syscom: {save syscom pointer}
f lush_f lag: =false:
stop_f lag: ~false;
q_init( coo_queue );
coo_queue.ringbell:=true;
bios_con_init:=coninit;

end;

Function bios_con_stat! var status:statrec; control:statctrl ):iorsltwdl;
begin

pollunits;
if control.io_direction=input_status

then statuslOJ:""q_count( con_queue
else status[O]:~O;

bios_con_stat: =con_queue. iorsl t;
end;

Function bios_prn_read! var ch:char ):iorBlt~d};

begin
ch: =q_get ( prn_queue ):
bios_prn_read: =prn_queuE'. i orsl t;

end:

Function bios_prn_~rite{ ch:char ): iorsltwd}:
begin

pollunits;
bios_prn_write:=prnwrit( ch ):

end;

Function bios_prn_init{:iorsltwd};
begin

q_init ( prn_queue ):
prn_queuE'.ringbE'll:=false;
bios_prn_init:~prninit:

end:

Function bios_prn_stat{ var statuB:statrec; control:statctrl ):iorsltwd};
begin

pollunits;
if control. i o_direct ion=input_status

then statusIOJ:=q_count( prn_queue
else status[O]:=O;

bios_prn_stat: =prn_queuE'. i or 51 t;
end:

Procedure disk_change{ var newfornl:disk_inforec }i
const blksize=512;
var phys_sector,logic_sector,tryit:integer;

used:boolean;
begin

curform:=newform:
sect_per _block: =blks i ze d i v cu r form. bytes_per_sector :

A-22 0400101:0AA



Appendix E

{initialize sector_translation table}
phys_sector:-01
for logic_sector:~O to curform.sectors-pec_track-l do

begin
repeat

if phys_sector>-curform.sectors-per_track
then phys_sector:=phys_sector-curform.sectors_per_trackj

used:=false;
for tryit:=O to logic_sector-l do

if sect_trans.pb-(tryitJ=phys_sector then used:=true;
if used then phys_sector:.phys_sector+l;

until not used;
sect_trans.pb~(logic_sector]:.phys_sector;

phys_sector:-phys_sector+curform.interleave;
end;

end (disk_change};

Function disk rw( block:lntegelj length:integer; bUffer:p~emory;

index~ drive:integer: control:rwctrl:
baseaddr:fulladdrens; read_disk:boolean ):iorsltwd;

label
const
var

10,99;
max_retry..S ~

partial:boolean;
retry,rel_sector,logic_sector,logic_track,skew,
sector,track:integer;
stackbase:fulladdress;
iorslt:iorsltwdr

procedure calc_sect:
{calculate physical sector address from logical spctor address}
begin

sector:"( (sect_trans.pbA[logic_sector]+skew) mod
curform.sectors_per_track )+1;

end;

procedure convert;
{convert block parameter to track and sector address}
begin

if control.physsect
then begin

length:"curform.bytes-per_sector;
track:ablock div curform.sectors_per_track;
sector:"(block mod curform.sectors_per_track)+l;

end
else begin

rel_sector:zblock*sect_per_block;
logic_track : .. rel_sector div curform.sectors_per_trackj
logic_sector:zrel_sector mod curform.sectors_per_track;
track: alog ic_track+cur form. f i rst-pascal_t rack;
skew:clogic_track*curform.track_skew;
calc_sect;

end;
end {convert};

begin
setdisk( drive )j

partial:=false;
convert;
dskstrt;
settrak ( track );
while length>O do

begin
retry: amax_retry j

if track>curform.tracks_per_disk
then begin

iorslt: .. i_ill_block;
goto 99;

end;
if (length<curform.bytes-per_sector) and read_disk

then begin
partial:a:true;
stackbaseIOJ:a:O;
stack base (1 J : ..0;
setbufr( sector_buffer, 0, stackbase );

end

0400101:0AA A-23



Appendix E

else setbufr ( buffer, index, baseaddress );
setsect( sector );
10:
polluni ts;
if read_disk then iorslt:=dskread

else iorslt:=dskwrit:
if iorslt<>i_oo_error

then begin
if iorslt<>i_bad_block then gate 99;
if retry=max_retry

then begin
iorslt:=dskinit;
if iorslt=i_oo_unit then gato 99:

end:
retry:=retry-l;
if retry>O then gate 10:
goto 99,

end:
if partial

then begin
{Note: when copying partial sector buffer, destination
address also includes wbaseaddr· which is not shown below}

moveleft( sector_buffer.pb~IO), buffer.pbAtindexl, length );
goto 99,

end:
index: = index+cu r form .bytes-per_sector;
length:=length-curform.bytes_per_sector;
logic_sector:=logic_sector+I:
if logic_sector>=curform.sectors-per_track

then begin
skew: =skew+cur form. track_skew;
track:=track+l;
settrak ( track);
logic_sector:=O:

end;
calc_sect:

end {while length>O};
99:
dskstop;
disk_rw:-=iorslt;

end {disk_rw}:

Function bios_dsk_read{ block:integer; length:integer: buffer:p_memory:
index, drive:integer; control:rwctrl;
codepool:fulladdress ):iorsltwd}:

begin
bios_dsk_read:"disk rw( block, length, buffer, index, drive, control,

codepool, true );
end;

block, length, buffer, inde~, drive, control,
baseaddr, false );

var
begin

baseaddr[O] :0:::0;
baseaddr [11 :"0;
bios_dBk_wr ite: -=di sk_rw (

Function bios_dsk_write{ block:integer; length:integer; buffer:p_memory:
index, drive:integer; control:rwctrl ):iorsltwdJj

baseaddr:fulladdressi

end:

Function bios_dsk_init{ drive:integer ):iorsltwdJ;
begin

setdisk ( drive):
dskstrt;
bios_dsk_init: ..dskinit;
dskstop;

end;

Function bios_dsk_stat ( dr ive: integer j var status: statrec;
control:statctrl ):iorsltwdJ;

begin
setdisk( drive ); {setdisk might call disk_change}
status [0] :=0;
status (1 J : "cur form. bytes-per_sector :
status[2J:-curform.sectors-per_track:
status [3] : "'cur form. track s-per_d isk;
bios_dsk_stat:-i-"o_error;

end:

A-24 0400101:0AA



Appendix E

Function bio5_rem_read{ var ch:char ):iorsltwd);
begin

ch: "~get ( rem_queue ):
bios_reu'Lread: ·rem_queue. ior 51 t:

end,

Function bios_cern_writer ch:char ):iorsltwd);
begin

pollunits:
bios_rem-write:sremwrit( ch );

end:

Function bios_rem_init{:iorsltwdJ;
begin

CJ-init( rem_queue );
rem_queup.ringbell:""false;
bios_rem_init:sreminit;

end:

Function bios_rern_stat{ var status:statrec; control:statctr} ):iorsltwd};
begin

pollunits:
if control. iO_direction=input_status

then status I 0] : -CJ-count ( rem_queue
else status[Ol:zO:

bios_cern_stat: =rem_queue. ior 61 t;
end;

Function bios_usr_read{ block:integer; length:integer; buffer:p_memory;
index, device:integer; control:rwctrl ):iorsltwdlr

begin
bios_usr_read:=usrread( block, length, buffer, index, device, control ),

end;

Function bio~_usr_writel block:integer; length:integer; buffer:p-memory;
index, device:integer; control:rwctrl ):iorsltwdJ1

begin
bioR_usr_write:=usrwrit( block, length, buffer, index, device, control );

end;

Function bios_usr_initl device:integer }:iorsltwd):
begin

bios_usr_init:=usrinit( device):
end;

Function bios_usr_stat{ device:integer; var status:statrec;
control:statctrl ):iorsltwd};

begin
bios_usr_stat:susrstat( device, status, control );

end:

Function bios_sys_readt block:integer; length:integer; buffer:p_memory;
index, device:integer; control:rwctrl J:iorsltwdJ;

begin
syshalt;

end;

Function bios_sys_writel block:integer; length:integer; buffer:p-memory;
index, device:integer; control:rwctrl ) :iorsltwd);

begin
ayah.lt ;

end;

Functior. biof;_sys_init l device: integer;
procedure signal_event{ event_num:integer ) ):iorsltwd);

begin
bios_sys_init:=sysinit( signal_event, pollunits, disk_change );

end;

Function bios_sys_statl var status:statrec; control:statctrl ):iorsltwd};

0400101:0AA A-25



Appendix E

begin
status [0] :=hi_addr. i;
bios_sys_stat:""clkread( status[21, statusfll );

end;

Procedure bios_quiet;
begin

quiet:
end:

Procedure bios_enable;
begin

enablE';
encl;

Function bios_ser_read[ device:integer; var ch:char ):iorsltwdl;
begin

bios_ser_read:ai_no_unit;
end;

Function bios_sec_writer device:integer: ch:char ):iorsltwd};
begin

bios_ser_write:=i_no_unit;
end;

Function bios_ser_init{ device:integer ):iorsltwd};
begin

bios_ser_init:ci_no_unit;
end:

Functiop bio5_ser_stat{ device:integer: var status:statrec;
control:statctrl ):iorsltwdl;

beg n
b os_ser_stat:=i_no_unit;

eno

End (BIOS}.

A-26 0400101:0AA



APPENDIX F
ASCII TABLE

0 000 00 NUL 32 040 20 SP 64 100 40 @ 96 140 60
1 001 01 SOH 33 041 21 65 101 41 A 97 141 61 a
2 002 02 STX 34 042 22 66 102 42 B 98 142 62 b
3 003 03 ETX 35 043 23 • 67 103 43 C 99 143 63 c
4 004 04 EOT 36 044 24 $ 78 104 44 D 100 144 64 d
5 005 05 ENQ 37 045 25 % 69 105 45 E 101 145 65 e
6 006 06 ACK 38 046 26 & 70 106 46 F 102 146 66 f
7 007 07 BEL 39 047 27 71 107 47 G 103 147 67 9
8 010 08 BS 40 050 28 72 110 48 H 104 150 68 h
9 011 09 HT 41 051 29 73 III 49 I 105 151 69

10 012 OA LF 42 052 2A 74 112 4/\ J 106 152 6A j
11 013 OB VT 43 053 2B + 75 113 4B K 107 153 6B k
12 014 OC FF 44 054 2C 76 114 4C L 108 154 6C 1
13 015 OD CR 45 055 2D 77 115 4D M 109 155 6D m
14 016 OE SO 46 056 2E 78 116 4E N 110 156 6E n
15 017 OF SI 47 057 2F I 79 117 4F 0 111 157 6F 0

16 020 10 DLE 48 060 30 0 80 120 50 P 112 160 70 P
17 021 11 DCl 49 061 31 1 81 121 51 Q 113 161 71 q
18 022 12 DC2 50 062 32 2 82 122 52 R 114 162 72
19 023 13 DC3 51 063 33 3 83 123 53 S 115 163 73 s
20 024 14 DC4 52 064 34 4 84 124 54 T 116 164 74 t
21 025 15 NAK 53 065 35 5 85 125 55 U 117 165 75 u
22 026 16 SYN 54 066 36 6 86 126 56 V 118 166 76 v
23 027 17 ETB 55 067 37 7 87 127 57 W 119 167 77 w
24 030 18 CAN 56 070 38 8 89 130 58 X 120 170 78 x
25 031 19 EM 57 071 39 9 89 131 59 Y 121 171 79 Y
26 032 1/\ SUB 58 072 3A 90 132 SA Z 122 172 7A z
27 033 IB ESC 59 073 3B 91 133 5B [ 123 173 7B
28 034 lC FS 60 074 3C < 92 134 5C \ 124 174 7C
29 035 ID GS 61 075 3D 93 135 5D I 125 175 7D
30 036 IE RS 62 076 3E > 94 136 5E 126 176 7E
31 037 IF US 63 077 3F ? 95 137 SF 127 177 7F DEL

0400101:0AA A-27



APPENDIX G
GLOSSARY

This specialized glossary is intended as an aid to
readers who are unfamiliar with some of the terms
used in this document. It isn't meant to be
comprehensive.

ASSOCIATE TIME - That part of a program's
lifetime in which the segments and their various
references to each other are associated by the
operating system. This occurs when the program is
prepared for execution.

BLANK-FILLED - All 8-bit bytes within the
specified region are filled with blanks (ASCII 32).

BLOCK - An area of memory (usually on a disk)
with a fixed size of 512 contiguous 8-bit bytes (256
contiguous 16 bit-words).

BLOCK BOUNDARY - Byte zero of any block.

BYTE POINTER - A byte address (as opposed to
a word address).

BYTE SEX - Some processors address 16-bit words
with the most-significant-byte first, others with the
least-significant-byte first. Byte sex refers to this
difference in addressing; two machines with
different addressing styles are said to have
different (or opposite) byte sex.

A-28 0400101:0AA



Appendix G

COMPILATION UNIT - A program or portion of a
program that can be compiled by itself-in other
words, a program or a UNIT.

COMPILE TIME - That
lifetime in which it is
assembled).

part of a program's
being compiled (or

CONCURRENCY - The execution of two or more
tasks or processes in parallel; that is, at the same
time. Synonymous with multitasking.

DYNAMIC - Information which changes during
program execution (or isn't known before run-time).

PILLER - A field in a data structure that is at
present unused. If this area is described as
"reserved for future use," then it usually should be
zero-filled. This avoids confusion when future
versions of the system make use of filler space.

INTERSEGMENT - The data (or
question occupies more than one
contains pointers to another segment.

program)
segment,

in
or

An environment that
user, where each user can

(The p-System doesn't

LINK TIME - That part of a program's lifetime in
which it is being operated on by the linker.

MU LTIPROGRAMMING
supports more than one
perform multitasking.
support multiprogramming.)

0400101:0AA A-29



Appendix G

MULTITASKING - The execution of two or more
tasks in parallel; that is, at the same time. A task
is a PROCESS from your point of view; from the
system's point of view it might be a program. (The
ITSystem does support multitasking.)

MULTIWORD - Some positive integral number of
words.

NATIVE CODE - Assembled code for some
physical (as opposed to ideal) processor. Also
called machine code or (sometimes) hard code.

ONE'S COMPLEMENT - All bits in the designated
field are flipped.

P-CODE - Assembled code for an ideal processor.
P-code stands for "pseudo-code." The ITSystem
PME implements a "pseudo machine emulator."

POSTPROCESSOR - A program which is executed
after the completion of some other program, and
uses as input the output of that previous program.
A postprocessor that creates output which can be
used by still another program is often called a
"filter."

PRINCIPAL SEGMENT - A segment that has a
segment reference list; for example, a segment with
a SEG TYPE of PROG SEG or UNIT SEG.
Corresponds to the outer segment oC any
compilation unit. UNITs, FORTRAN programs, and
the outermost block of a Pascal program are all
principal segments.

A-30 0400101:0AA



RELOCATABLE 
can be moved to
without changing
relocatable. Native

Appendix G

A portion of object code that
different locations in memory
its meaning. P-code is

code mayor may not be.

RUN-TIME - That part of a program's lifetime in
which it is being executed (or "run").

SELF-MODIFYING - Code which overwrites or
modifies itself during execution, thus changing its
meaning. This isn't recommended!

SEG-RELATIVE The address of an object is
specified as an offset from the beginning of the
code segment in which it resides.

STATIC - Information which doesn't change
throughout program execution (it is known before
run-time).

SUBSIDIARY SEGMENT - A segment that has no
segment reference list; for example, a segment with
a SEG TYPE of PROC SEG or SEPRT SEG.
CorrespOnds to the object code of any segment
whose source text is not separately compilable.
Pascal segment procedures and segments produced
by the UCSD adaptable assembler are subsidiary
segments.

TOS - Short for "top of stack." Also represents
the object that is on the top of the p-machine
stack (which is the object that was most recently
pushed).

0400101:0AA A-31



Appendix G

UPWARD COMPATIBILITY - Code that runs on
current versions of a system will run on future
versions of that system. A more limited and more
easily obtained version of upward compatibility
requires source code to be recompiled on new
versions, but ensures that it will run when
recompiled.

WORD - Sixteen bits aligned on an even
byte-address boundary. The byte which is most
significant is determined by the byte sex of the
machine for which it was generated.

WORD POINTER - A word address (as opposed to
a byte address). The address of a word must be
even.

ZERO-FILLED A field of data that contains
nothing but zeroes (all bits must be 0).

A-32 0400101:0AA



INDEX

-*-
*** . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21

-A-
ALPHALOCK ••••
Assembler-Generated Code

. . . . . . . . . .
Files. . . . . . ...

4-29
2-36

BIOS. . . . . . . . . . . . . .
Console •••••
Disk ••••••
Entry Points ••
Printer ••••••••••

Basic
Basic

-B
Input/Output Subsystem.
I/O Subsystem.

. . . . .. 4-3
...... . 3-7
••• 3-7, 4-3

4-39
• 4-53
• 4-62

• ••• 4-50
Remote •.•••••••••••••.••.••• 4-58
Routine Parameters. • • • • • •••• 4-62
6500 Specifics •••••••••••••••••• 4-69
68000 Specifics...... • • • • • • . • • • • 4-73
6809 Specifics.. • • 4-71
8080 Specifics. • 4-67
8086 Specifics.. • • 4-64
Z80 Specifics.................. 4-67

Blank Compression Code •••••••••••••• 4-26
Block I/O. 5-25
BREAK. • • • • • • 4-46
Byte Sex....................... 2-6

0400101:01A 1-1



Index

-c-

2-3,
. . . . . . . . . . . 5-13

3-5
4-13
5-20
3-17

• ••• 2-8
4-11. . . .

. .
code pool •••••••
Code Segments....
Completion Codes ••
Concurrency ••••
concurrency •••
Constant Pool ••••••
CONTROL Parameters.

-D-

I/O ••••••
Numbers.

DATAAREA ••
Data_Size ••
DEF ••
Device
Device ..

. . ...

4-20
2-7

2-37
• 3-7
4-10

Directories •••••••••••••••••••••• 5-24

D LE. • • . • • . • . • . . . . . • . . • • . • . • • .
DISPOSE. .. 5-7

4-26

Environment
Environment
EOF •••
E REC ••
EVEC •••
Exit IC ••

- E

Record ••
Records ••

.. ..
. ..

3-13
3-13
4-28
3-13
3-13
• 2-7

F-
Fault Handling.
Fault Message.
FaulC Sem

.. • 5-18
• 5-18
5-18

1-2 040010l:01A



FIB .
File Information
FLUSH ••••••

Block.

-H-

Index

• • 5-22
5-22
4-45

heap ••••
Heaplnfo. . .

-1-

• 3-4, 5-5
5-10

interpreter.
IORESULT.
IP C. . . . . . . . . . . . . . . . . . . . . . . ....

L-

3-4
4-13
3-19

Linker
Logical

Information. • • •
Disk Structure

-M-

2-22
• 4-14

MARK •••...••..
MemLink
MP ••••

-N-

. . . . . . . . . . . . 5-5
5-9

3-19

NEW •••
NOCRLF Bit.

• • 5-6
• • • • • 4-27

0400101:OIA 1-3



Index

-0-

Operating System................... 5-3

p-

RELEASE ..•••...•.•.•......•••.

J;rmachine •••••••
J;rmachine emulator.
PED ••••
PERM DISPOSE ••
PERMNEW ••••
physical sector mode
P MACHINE Intrinsic •••
PNIE •••
Program Environment Descriptor.

-R-
Record I/O.
REF •••

Relocation List.....
Routine Dictionaries.
RSP ••
RSP/IO ••

-8-

4-3,

3-3
• 3-4

6-5
5-7
5-7

4-15
• 3-22

3-4
• 6-5

5-25
2-37

5-5
2-15

2-7
4-25

4-3

SP .
stack ••••••
START/STOP ••

SBIOS.
Screen
Segment
SIB •••

1-4

I/O ••••••
Information Blocks.

• 4-4
5-25
.3-8

•• 3-8
3-19

3-4
4-44

0400101:0IA



Index

-T-

task .
Task Environments..
Task Info ••
Text I/O ••••
TIB .
Type-Ahead •••

3-17
.3-17

• •• 5-20
• 5-26

•••• 3-18
4-47

-u-
UNITBUSY ••••
UNITCLEAR. • • • 4-9,
UNITNUMBER ••••••••••••••••

4-22
4-24
4-19
4-19
4-24
4-23
4-19
4-10

• 4-9,
4-13,

4-13,
• • 4-9, 4-13,

4-9,
• 4-9, 4-13,

Devices. . . . . . . . . . . . . . ..

UNITREAD •••
UNITSTATUS ••••
UNITWAIT ••
UNITWRITE.
User-Defined

-v-
VARDISPOSE ••
VARNEW •••••

5-7
5-6

0400101:OIA 1-5




	Cover
	Preface
	Table of Contents
	Chatper 1: Introduction
	Chapter 2: Code File Format
	Chapter 3: p-machine
	p-code Descriptions

	Chapter 4: Low-Level I/O
	Chapter 5: Operating System
	Chapter 6: Program Execution
	Appendices
	Appendix A: p-machine Opcodes (Alphabetic Order)
	Appendix B: p-machine Opcodes (Numeric Order)
	Appendix C: p-machine Intrinsics
	Appendix D: Pascal Definitional RSP
	Appendix E: Pascal Definitional BIOS
	Appendix F: ASCII Table
	Appendix G: Glossary

	Index



